Skip to main content
Log in

Assessment of Different Technologies for Managing Yard Waste Using Analytic Hierarchy Process

  • Original Research Paper
  • Published:
Process Integration and Optimization for Sustainability Aims and scope Submit manuscript

Abstract

The heterogeneity of solid waste generated by a large population of different socio-economic backgrounds in India makes it difficult to have a universal best treatment option. The present study reports a comprehensive assessment of six different technologies for managing yard waste using analytic hierarchy process (AHP): composting, incineration, landfill, anaerobic digestion, pelletization-gasification, and pelletization-pyrolysis. Four criteria, namely, environmental, economic, technical, and socio-political have been considered for evaluation, with each of these having further sub-criteria. The 4 criteria, 17 sub-criteria, and the 6 alternatives are evaluated using AHP for two different cases: one for calculated weights based on the objective, and other assuming equal weights for each criterion and sub-criterion. The pairwise comparison matrices are formed using data collected from literature and the responses recorded from the questionnaire survey. The results are then synthesized to find the most appropriate process for managing yard waste. For both, case 1 and case 2, pelletization-gasification (PG) was the most promising technology followed by pelletization-pyrolysis (PP). Landfill (LF) and incineration (IN) technologies proved to be the least preferred alternatives for managing yard waste. Finally, a sensitivity analysis is performed to investigate the effect of variation in importance of different criteria on the final rankings of the technology alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abba AH, Noor ZZ, Aliyu A, Medugu NI (2013) Assessing sustainable municipal solid waste management factors for Johor-Bahru by analytical hierarchy process. Adv Mater Res 689:540–545

    Article  Google Scholar 

  • Annepu RK (2012) Sustainable solid waste management in India. Waste-to-Energy Res Technol Counc. Columbia University

  • Armi M, Samah A, Manaf LA, Zukki M (2010) Application of AHP model for evaluation of solid waste treatment technology. Int J Tech Sci 1:35–40

    Google Scholar 

  • Ashwekar P, Jiang Y, Pan H (2017) Feasibility study of energy recovery by incineration—a case study of the triangle wastewater treatment plant. Duke University

  • Asnani PU (2006) Solid waste management. India Infrastructure Report. Oxford University Press, New Delhi, pp 160–188

    Google Scholar 

  • Axelsson C, Kvarnström T (2010) Energy from municipal solid waste in Chennai, India—a feasibility study

  • Babalola MA (2015) A multi-criteria decision analysis of waste treatment options for food and biodegradable waste management in Japan. Environments 2:471–488

    Article  Google Scholar 

  • Belgiorno V, De Feo G, Della Rocca C, Napoli RMA (2003) Energy from gasification of solid wastes. Waste Manag 23:1–15

    Article  Google Scholar 

  • Boldrin A (2009) Environmental assessment of garden waste management. Technical University of Denmark

  • ChaoKe, Hanchao Y, Dang F (2013) Application of AHP in selection of wind farm’s location. Int J Energy Sci 3:18–22

    Google Scholar 

  • Chatzimouratidis AI, Pilavachi PA (2007) Objective and subjective evaluation of power plants and their non-radioactive emissions using the analytic hierarchy process. Energy Policy 35:4027–4038

    Article  Google Scholar 

  • Chen Y-T (2016) A cost analysis of food waste composting in Taiwan. Sustainability 8:1–13

    Google Scholar 

  • Chen WH, Peng J, Bi XT (2015) A state-of-the-art review of biomass torrefaction, densification and applications. Renew Sust Energ Rev 44:847–866

    Article  Google Scholar 

  • Chhabra V, Shastri Y, Bhattacharya S (2016) Kinetics of pyrolysis of mixed municipal solid waste—a review. Procedia Environ Sci 35:513–527

    Article  Google Scholar 

  • Database of Waste Management Technologies [WWW Document], Accessed 14 June 2018. Waste Control

  • Department of Environment, Government of NCT of Delhi [WWW Document] Accessed 2 Oct 2018. http://www.delhi.gov.in/wps/wcm/connect/environment/Environment/Home/Campaign/Burning+of+leaves

  • Durgekar V (2016) Towards sustainable waste management through technological innovations, effective policy, supply chain integration & participation. Procedia Environ Sci 35:140–149

    Article  Google Scholar 

  • Eilrich FC, Doeksen G, Van Fleet H (2003) An economic analysis of landfill costs to demonstrate the economies of size and determine the feasibility of a community owned landfill in rural Oklahoma. Southern Agricultural Economics Association Annual Meeting. Alabama, p 1–21

  • Fernández-González JM, Grindlay AL, Serrano-Bernardo F, Rodríguez-Rojas MI, Zamorano M (2017) Economic and environmental review of waste-to-energy systems for municipal solid waste management in medium and small municipalities. Waste Manag 67:360–374

    Article  Google Scholar 

  • FICCI (2009) Survey on the current status of municipal solid waste management in Indian cities and the potential of landfill gas to energy projects in India. New Delhi

  • Ghosh SK (2016) Sustainable SWM in developing countries focusing on faster growing economies, India and China. Procedia Environ Sci 35:176–184

    Article  Google Scholar 

  • Ghosh R, Kansal A (2014) Urban challenges in India and the mission for a sustainable habitat. Interdisciplina 2:281–304

    Google Scholar 

  • Gidde, M., Kokate, K., Todkar, V., 2008. Municipal solid waste management in emerging mega cities: a case study of Pune City, In: Indo Italian Conference on Green and Clean Environment. Pune, p 441–450

  • Gumisiriza R, Hawumba JF, Okure M, Hensel O (2017) Biomass waste-to-energy valorisation technologies: a review case for banana processing in Uganda. Biotechnol Biofuels 10:1–29

    Article  Google Scholar 

  • Gupta N, Yadav KK, Kumar V (2015) A review on current status of municipal solid waste management in India. J Environ Sci 37:206–217

    Article  Google Scholar 

  • Hornung A, Apfelbacher A, Sagi S (2011) Intermediate pyrolysis: a sustainable biomass-to-energy concept-biothermal valorisation of biomass (BtVB) process. J Sci Ind Res (India) 70:664–667

    Google Scholar 

  • Ishizaka A, Labib A (2009) Analytic hierarchy process and expert choice: benefits and limitations. OR Insight 22:201–220

    Article  Google Scholar 

  • Jaber J, Jaber Q, Sawalha S, Mohsen M (2008) Evaluation of conventional and renewable energy sources for space heating in the household sector. Renew Sust Energ Rev 12:278–289

    Article  Google Scholar 

  • Jha AK, Singh SK, Singh GP, Gupta PK (2011) Sustainable municipal solid waste management in low income group of cities: a review. Trop Ecol 52:123–131

    Google Scholar 

  • Joshi R, Ahmed S (2016) Status and challenges of municipal solid waste management in India: a review. Cogent Environ Sci 2:1–18

    Article  Google Scholar 

  • Jouhara H, Czajczyńska D, Ghazal H, Krzyżyńska R, Anguilano L, Reynolds AJ, Spencer N (2017) Municipal waste management systems for domestic use. Energy 139:485–506

    Article  Google Scholar 

  • Kahraman C, Kaya I (2010) A fuzzy multicriteria methodology for selection among energy alternatives. Expert Syst Appl 37:6270–6281

    Article  Google Scholar 

  • Kaliyan N, Morey RV (2010) Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresour Technol 101:1082–1090

    Article  Google Scholar 

  • Kim M, Jang YC, Lee S (2013) Application of Delphi-AHP methods to select the priorities of WEEE for recycling in a waste management decision-making tool. J Environ Manag 128:941–948

    Article  Google Scholar 

  • Kumar S, Smith SR, Fowler G, Velis C, Kumar SJ, Arya S, Kumar R, Cheeseman C (2017) Challenges and opportunities associated with waste management in India. R Soc Open Sci 4:1–20

    Article  Google Scholar 

  • Madadian E, Amiri L, Abdoli MA (2013) Application of analytic hierarchy process and multicriteria decision analysis on waste management: a case study in Iran. Environ Prog Sustain Energy 32:810–820

    Article  Google Scholar 

  • Marshall RE, Farahbakhsh K (2013) Systems approaches to integrated solid waste management in developing countries. Waste Manag 33:988–1003

    Article  Google Scholar 

  • Melaré V d SA, Montenegro González S, Faceli K, Casadei V (2017) Technologies and decision support systems to aid solid-waste management: a systematic review. Waste Manag 59:567–584

    Article  Google Scholar 

  • Mohanty CR, Mishra U, Beuria PR (2014) Municipal solid waste management in Bhubaneswar, India—a review. Int J Latest Trends Eng Technol 3:303–312

    Google Scholar 

  • Pandey S, Malik JK (2015) Industrial and urban waste management in India. New Delhi

  • Potdar A, Singh A, Unnnikrishnan S, Naik N, Naik M, Nimkar I (2016) Innovation in solid waste management through clean development mechanism in India and other countries. Process Saf Environ Prot 101:160–169

    Article  Google Scholar 

  • Pradhan P, Arora A, Mahajani SM (2018) Pilot scale evaluation of fuel pellets production from garden waste biomass. Energy Sustain Dev 43:1–14

    Article  Google Scholar 

  • Report of the Task Force on Waste to Energy (2014) New Delhi

  • Rural empowerment through biogas entrepreneurship [WWW Document], Accessed 14 June 2018. IIT Delhi. URL http://www.web.iitd.ac.in/.../Entrepreneurship%2520Models%2520on%2520 Biogas%2520for%2520Rural%25

  • Rynk R (2008) Monitoring moisture in composting systems. Biocycle:24–30

  • Saaty TL (1980) The analytic hierarchy process. McGraw Hill, New York

    MATH  Google Scholar 

  • Saaty TL (1990) How to make a decision: the analytic hierarchy process. Eur J Oper Res 48:9–26

    Article  MATH  Google Scholar 

  • Saaty TL, Hu G (1998) Ranking by eigenvector versus other methods in the analytic hierarchy process. Appl Math Lett 11:121–125

    Article  MathSciNet  MATH  Google Scholar 

  • Saaty T, Vargas L (2000) Models, methods, concepts and applications of the analytic hierarchy process. Kluwer Academic Publishers, Boston

    MATH  Google Scholar 

  • Saini S, Rao P, Patil Y (2012) City based analysis of MSW to energy generation in India, calculation of state-wise potential and tariff comparison with EU. Procedia - Soc. Behav Sci 37:407–416

    Google Scholar 

  • Samah MAA, Manaf LA, Aris AZ, Sulaiman WNA (2011) Solid waste management: analytical hierarchy process (AHP) application of selecting treatment technology in Sepang Municipal Council, Malaysia. Curr. World Enviroment 6:1–16

    Google Scholar 

  • Shamshiry E, Mokhtar MB, Abdulai AM, Komoo I (2015) Using the analytic hierarchy process to enhance sustainable solid waste management: case study of Langkawi Island, Malaysia. Environ Qual Manag 24:51–65

    Article  Google Scholar 

  • Sharholy M, Ahmad K, Mahmood G, Trivedi RC (2008) Municipal solid waste management in Indian cities—a review. Waste Manag 28:459–467

    Article  Google Scholar 

  • Suriapparao DV, Vinu R (2015) Bio-oil production via catalytic microwave pyrolysis of model municipal solid waste component mixtures. RSC Adv 5:57619–57631

    Article  Google Scholar 

  • Thengane SK, Hoadley A, Bhattacharya S, Mitra S, Bandyopadhyay S (2014) Cost-benefit analysis of different hydrogen production technologies using AHP and fuzzy AHP. Int J Hydrog Energy 39:15293–15306

    Article  Google Scholar 

  • Tumuluru JS, Wright CT, Hess JR, Kenney KL (2011) A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels Bioprod Biorefin 5:683–707

    Article  Google Scholar 

  • Wang L, Chu J, Wu J (2007) Selection of optimum maintenance strategies based on a fuzzy analytic hierarchy process. Int J Prod Econ 107:151–163

    Article  Google Scholar 

  • Yap HY, Nixon JD (2015) A multi-criteria analysis of options for energy recovery from municipal solid waste in India and the UK. Waste Manag 46:265–271

    Article  Google Scholar 

Download references

Acknowledgements

This research has been funded by the Tata Centre for Technology and Design, Indian Institute of Technology Bombay, India, through project DGDON 422.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonal K. Thengane.

Ethics declarations

Conflict of Interest

The corresponding author states that there is no conflict of interest.

Appendix

Appendix

Pairwise comparison matrices for remaining 16 sub-criteria.

Volume reduction (VR)

 

CT

IN

LF

AD

PG

PP

Priority vector

CT

1

1/4

1/5

1/2

1/6

1/3

0.043

IN

4

1

1/2

3

1/3

2

0.112

LF

5

2

1

4

1/2

3

0.376

AD

2

1/3

1/4

1

1/5

1/2

0.053

PG

6

3

2

5

1

4

0.259

PP

3

1/2

1/3

2

1/4

1

0.156

λmax = 6.24, CI = 0.04

Utility consumption (UC)

 

CT

IN

LF

AD

PG

PP

Priority vector

CT

1

3

1/7

1/4

1/6

1/5

0.045

IN

1/3

1

1/9

1/6

1/8

1/7

0.025

LF

7

9

1

4

2

3

0.387

AD

4

6

1/4

1

1/3

1/2

0.115

PG

6

8

1/2

3

1

2

0.258

PP

5

7

1/3

2

1/2

1

0.170

λmax = 6.24, CI = 0.049

Safety & user-friendliness (SU)

 

CT

IN

LF

AD

PG

PP

Priority vector

CT

1

2

7

5

3

4

0.383

IN

1/2

1

6

4

2

3

0.251

LF

1/7

1/6

1

1/3

1/5

1/4

0.034

AD

1/5

1/4

3

1

1/3

1/2

0.067

PG

1/3

1/2

5

3

1

2

0.161

PP

1/4

1/3

4

2

1/2

1

0.103

λmax = 6.16, CI = 0.032

Scalability potential (SP)

 

CT

IN

LF

AD

PG

PP

Priority vector

CT

1

1/2

1/5

2

1/4

1/3

0.064

IN

2

1

1/4

3

1/2

1/3

0.102

LF

5

4

1

6

2

3

0.382

AD

1/2

1/3

1/6

1

1/5

1/4

0.043

PG

4

2

1/2

5

1

2

0.234

PP

3

3

1/3

4

1/2

1

0.176

λmax = 6.17, CI = 0.035

Capital cost (CC)

 

CT

IN

LF

AD

PG

PP

Priority vector

CT

1

7

8

9

3

4

0.461

IN

1/7

1

2

3

1/5

1/4

0.062

LF

1/8

1/2

1

2

1/6

1/5

0.042

AD

1/9

1/3

1/2

1

1/7

1/6

0.029

PG

1/3

5

6

7

1

2

0.239

PP

1/4

4

5

6

1/2

1

0.166

λmax = 6.25, CI = 0.05

Annual O & M cost (OC)

 

CT

IN

LF

AD

PG

PP

Priority vector

CT

1

3

5

1/5

1/3

1/4

0.090

IN

1/3

1

3

1/7

1/5

1/6

0.046

LF

1/5

1/3

1

1/9

1/7

1/8

0.026

AD

5

7

9

1

3

2

0.394

PG

3

5

7

1/3

1

1/2

0.179

PP

4

6

8

1/2

2

1

0.265

λmax = 6.26, CI = 0.05

Land area (LA)

 

CT

IN

LF

AD

PG

PP

Priority vector

CT

1

1/4

1/2

1/6

1/9

1/8

0.028

IN

4

1

3

1/3

1/6

1/5

0.077

LF

2

1/3

1

1/5

1/8

1/7

0.039

AD

6

3

5

1

1/4

1/3

0.150

PG

9

6

8

4

1

2

0.417

PP

8

5

7

3

1/2

1

0.291

λmax = 6.27, CI = 0.05

Payback period (PP)

 

CT

IN

LF

AD

PG

PP

Priority vector

CT

1

3

7

2

1/3

1/2

0.177

IN

1/3

1

5

1/2

1/5

1/4

0.070

LF

1/7

1/5

1

1/6

1/9

1/8

0.025

AD

1/2

2

6

1

1/4

1/3

0.099

PG

3

5

9

4

1

2

0.379

PP

2

4

8

3

1/2

1

0.250

λmax = 6.27, CI = 0.05

Product demand (PD)

 

CT

IN

LF

AD

PG

PP

Priority vector

CT

1

5

9

3

2

4

0.383

IN

1/5

1

5

1/3

1/4

1/2

0.071

LF

1/9

1/5

1

1/7

1/8

1/6

0.025

AD

1/3

3

7

1

1/2

2

0.163

PG

1/2

4

8

2

1

3

0.253

PP

1/4

2

6

1/2

1/3

1

0.106

λmax = 6.21, CI = 0.04

Load on fossil fuels (LF)

 

CT

IN

LF

AD

PG

PP

Priority vector

CT

1

1/2

2

1/4

1/5

1/3

0.064

IN

2

1

3

1/3

1/4

1/2

0.101

LF

1/2

1/3

1

1/5

1/6

1/4

0.043

AD

4

3

5

1

1/2

2

0.250

PG

5

4

6

2

1

3

0.382

PP

3

2

4

1/2

1/3

1

0.160

λmax = 6.12, CI = 0.024

Pollution and emissions (PE)

 

CT

IN

LF

AD

PG

PP

Priority vector

CT

1

7

4

5

3

1/2

0.292

IN

1/7

1

1/3

1/5

1/4

1/8

0.030

LF

1/4

3

1

1/3

1/2

1/6

0.060

AD

1/5

5

3

1

2

1/4

0.126

PG

1/3

4

2

1/2

1

1/5

0.090

PP

2

8

6

4

5

1

0.402

λmax = 6.31, CI = 0.06

Residue disposal (RD)

 

CT

IN

LF

AD

PG

PP

Priority vector

CT

1

1/3

3

1/5

1/7

1/6

0.046

IN

3

1

5

1/3

1/5

1/4

0.090

LF

1/3

1/5

1

1/7

1/9

1/8

0.026

AD

5

3

7

1

1/3

1/2

0.179

PG

7

5

9

3

1

2

0.394

PP

6

4

8

2

1/2

1

0.265

λmax = 6.26 CI = 0.05

Policy & subsidy (PS)

 

CT

IN

LF

AD

PG

PP

Priority vector

CT

1

9

6

2

3

4

0.412

IN

1/9

1

1/4

1/8

1/7

1/6

0.025

LF

1/6

4

1

1/5

1/4

1/3

0.055

AD

1/2

8

5

1

2

3

0.237

PG

1/3

7

4

1/2

1

2

0.163

PP

1/4

6

3

1/3

1/2

1

0.108

λmax = 6.3, CI = 0.06

Health impact (HI)

 

CT

IN

LF

AD

PG

PP

Priority vector

CT

1

4

2

1/3

1/4

1/2

0.109

IN

1/4

1

1/3

1/6

1/7

1/5

0.034

LF

1/2

3

1

1/4

1/5

1/3

0.068

AD

3

6

4

1

1/2

2

0.255

PG

4

7

5

2

1

3

0.370

PP

2

5

3

1/2

1/3

1

0.164

λmax = 6.16, CI = 0.032

Community acceptance (CA)

 

CT

IN

LF

AD

PG

PP

Priority vector

CT

1

1/2

4

3

1/4

1/3

0.108

IN

2

1

5

4

1/3

1/2

0.165

LF

1/4

1/5

1

1/2

1/7

1/6

0.035

AD

1/3

1/4

2

1

1/6

1/5

0.051

PG

4

3

7

6

1

2

0.386

PP

3

2

6

5

1/2

1

0.255

λmax = 6.165, CI = 0.033

Employment (EM)

 

CT

IN

LF

AD

PG

PP

Priority vector

CT

1

4

1/3

1/2

1/5

1/4

0.073

IN

1/4

1

1/6

1/5

1/8

1/7

0.029

LF

3

6

1

2

1/3

1/2

0.164

AD

2

5

1/2

1

1/4

1/3

0.106

PG

5

8

3

4

1

2

0.374

PP

4

7

2

3

1/2

1

0.255

λmax = 6.2, CI = 0.04

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thengane, S.K. Assessment of Different Technologies for Managing Yard Waste Using Analytic Hierarchy Process. Process Integr Optim Sustain 3, 255–272 (2019). https://doi.org/10.1007/s41660-018-0070-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41660-018-0070-1

Keywords

Navigation