Wireless big data: transforming heterogeneous networks to smart networks

  • Yudi Huang
  • Junjie Tan
  • Ying-Chang Liang
Review Paper


In HetNets (Heterogeneous Networks), each network is allocated with fixed spectrum resource and provides service to its assigned users using specific RAT (Radio Access Technology). Due to the high dynamics of load distribution among different networks, simply optimizing the performance of individual network can hardly meet the demands from the dramatically increasing access devices, the consequent upsurge of data traffic, and dynamic user QoE (Quality-of-Experience). The deployment of smart networks, which are supported by SRA (Smart Resource Allocation) among different networks and CUA (Cognitive User Access) among different users, is deemed a promising solution to these challenges. In this paper, we propose a frame-work to transform HetNets to smart networks by leveraging WBD (Wireless Big Data), CR (Cognitive Radio) and NFV (Network Function Virtualization) techniques. CR and NFV support resource slicing in spectrum, physical layers, and network layers, while WBD is used to design intelligent mechanisms for resource mapping and traffic prediction through powerful AI (Artificial Intelligence) methods. We analyze the characteristics of WBD and review possible AI methods to be utilized in smart networks. In particular, the potential of WBD is revealed through high level view on SRA, which intelligently maps radio and network resources to each network for meeting the dynamic traffic demand, as well as CUA, which allows mobile users to access the best available network with manageable cost, yet achieving target QoS (Quality-of-Service) or QoE.


wireless big data cognitive radio network network function virtualization software defined network machine learning smart radio allocation cognitive user sccess 


  1. [1]
    J. Mitola, G. Q. Maguire. Cognitive radio: making software radios more personal [J]. IEEE personal communnications, 1999, 6(4): 13–18.CrossRefGoogle Scholar
  2. [2]
    L. B. Thiagarajan, S. Attallah, Y.-C. Liang. Reconfigurable transceivers for wireless broadband access schemes [J]. IEEE wireless communications, 2007, 14(3): 48–53.CrossRefGoogle Scholar
  3. [3]
    R. Mijumbi, J. Serrat, J. L. Gorricho, et al. Network function virtualization: state-of-the-art and research challenges [J]. IEEE communications surveys and tutorials, 2015, 18(1): 236–262.CrossRefGoogle Scholar
  4. [4]
    C. Luo, J. Zeng, M. Yuan, et al. Telco user activity level prediction with massive mobile broadband data [J]. ACM transactions on intelligent systems and technology, 2016, 7(4): 63.CrossRefGoogle Scholar
  5. [5]
    J. Mitola, G. Q. Maguire. Cognitive radio: making software radios more personal [J]. IEEE personal communications, 1999, 6(4): 13–18.CrossRefGoogle Scholar
  6. [6]
    FCC Spectrum Policy Task Force. Report of the spectrum Efficiency Working Group [R]. ET Docket, 2002.Google Scholar
  7. [7]
    S. Haykin. Cognitive radio: brain-empowered wireless communications [J]. IEEE journal on selected areas in communications, 2005, 23(2): 201–220.CrossRefGoogle Scholar
  8. [8]
    Y. C. Liang, K. C. Chen, G. Y. Li, et al. Cognitive radio networking and communications: an overview [J]. IEEE transactions on vehicular technology, 2011, 60(7): 3386–3407.CrossRefGoogle Scholar
  9. [9]
    J. Lunden, V. Koivunen, H. V. Poor. Spectrum exploration and exploitation for cognitive radio: Recent advances [J]. IEEE signal processing magazine, 2015, 32(3): 123–140.CrossRefGoogle Scholar
  10. [10]
    A. T. Hoang. Y. Zeng, Y. C. Liang, R. Zhang. A review on spectrum sensing for cognitive radio: challenges and solutions [J]. EURASIP journal on advances in signal processing, 2010, 2010(1): 1–15.Google Scholar
  11. [11]
    R. Zhang, Y. C. Liang, S. Cui. Dynamic resource allocation in cognitive radio networks [J]. IEEE signal processing magazine, 2010, 27(3): 102–114.CrossRefGoogle Scholar
  12. [12]
    S. K. Sharma, T. E. Bogale, S. Chatzinotas, et al. Cognitive radio techniques under practical imperfections: a survey [J]. IEEE communications surveys and tutorials, 2015, 17(4): 1858–1884.CrossRefGoogle Scholar
  13. [13]
    Q. Sun, I. Chin-Lin, S. Han, et al. Software defined air interface: a framework of 5g air interface [C]//Proceedings of IEEE Wireless Communications Network Conference, 2015, 6–11.Google Scholar
  14. [14]
    B. Han, V. Gopalakrishnan, L. Ji, et al. Network function virtualization: challenges and opportunities for innovations [J]. IEEE communications magazine, 2015, 53(2): 90–97.CrossRefGoogle Scholar
  15. [15]
    M. Chiosi, D. Clarke, P. Willis. et al. Network functions virtualisation: an introduction, benefits, enablers, challenges and call for action [R]. Darmstadt-Germany: SDN and OpenFlow World Congress, 2012.Google Scholar
  16. [16]
    G. ETSI. Network functions virtualisation (nfv): architectural framework [J], ETSI GS NFV, 2013, 2(2): V1.Google Scholar
  17. [17]
    C. Liang, F. R. Yu, X. Zhang. Information-centric network function virtualization over 5g mobile wireless networks[J]. IEEE network, 2015, 29(3):68–74, 2015.CrossRefGoogle Scholar
  18. [18]
    R. Kokku, R. Mahindra, H. Zhang, et al. Nvs: a substrate for virtualizing wireless resources in cellular networks [J]. IEEE/ACM transactions on networking, 2012, 20(5): 1333–1346.CrossRefGoogle Scholar
  19. [19]
    C. Liang, F. R. Yu. Wireless virtualization for next generation mobile cellular networks [J]. IEEE wireless communications, 2015, 22(1): 61–69.CrossRefGoogle Scholar
  20. [20]
    V. Yazici, U. C. Kozat, M. O. Sunay. A new control plane for 5g network architecture with a case study on unified handoff, mobility, and routing management [J]. IEEE communications magazine, 2014, 52(11): 76–85.CrossRefGoogle Scholar
  21. [21]
    K. P. Murphy. Machine learning: a probabilistic perspective [M]. USA: MIT press, 2012.MATHGoogle Scholar
  22. [22]
    D. D. Clark, C. Partridge, J. C. Ramming, et al. A knowledge plane for the Internet [C]//Proceedings of Special Interest Group on Data Communication, 2003, 3–10.Google Scholar
  23. [23]
    T. G. Dietterich, P. Langley. Cognitive networks: towards self-aware networks [M]. USA: Wiley, 2007.Google Scholar
  24. [24]
    R. W. Thomas, D. H. Friend, L. A. Dasilva, et al. Cognitive networks: adaptation and learning to achieve end-to-end performance objectives [J]. IEEE communications magazine, 2006, 44(12): 51–57.CrossRefGoogle Scholar
  25. [25]
    N. Abbas, Y. Nasser, K. El Ahmad. Recent advances on artificial intelligence and learning techniques in cognitive radio networks [J]. EURASIP journal on wireless communications and network, 2015, 2015(1): 1.Google Scholar
  26. [26]
    S. Chouvardas, S. Valentin, M. Draief, et al. A method to reconstruct coverage loss maps based on matrix completion and adaptive sampling [C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, 2016, 6390–6394.Google Scholar
  27. [27]
    Z. Lu, G. De Veciana. Optimizing stored video delivery for mobile networks: the value of knowing the future [C]//Proceedings of IEEE Conference on Computer Communications, 2013, 2706–2714.Google Scholar
  28. [28]
    N. Marz, J. Warren. Big data: principles and best practices of scalable realtime data systems [M]. USA: O Reilly Media, 2015.Google Scholar
  29. [29]
    Y. Zheng, L. Capra, O. Wolfson, et al. Urban computing: concepts, methodologies, and applications [J]. ACM transactions on intelligent systems and technology, 2014, 5(3): 1–38.Google Scholar
  30. [30]
    M. F. Balcan, A. Blum, S. Fine, et al. Distributed learning, communication complexity and privacy [C]//Proceedings of Conference on Learning Theory, 2012, 23: 26.1-26.22.Google Scholar
  31. [31]
    E. J. Cands, B. Recht. Exact matrix completion via convex optimization [J]. Foundations of computational mathematics, 2009, 9(6): 717–772.MathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    Y. Zheng. Methodologies for cross-domain data fusion: An overview [J]. IEEE transactions on big data, 2015, 1(1): 16–34.CrossRefGoogle Scholar
  33. [33]
    E. E. Papalexakis, C. Faloutsos, N. D. Sidiropoulos. Tensors for data mining and data fusion: models, applications, and scalable algorithms [J]. ACM transactions on intelligent systems and technology, 2016, 8(2): 16:116:44.CrossRefGoogle Scholar
  34. [34]
    C. Xu, D. Tao, C. Xu. A survey on multi-view learning [J]. Preprint arXiv:1304.5634, 2013.Google Scholar
  35. [35]
    K. Crammer, M. Kearns, J. Wortman. Learning from multiple sources [J]. Journal of machine learning research, 2008, 9(12): 1757–1774.MathSciNetMATHGoogle Scholar
  36. [36]
    O. Kwon, N. Lee, B. Shin. Data quality management, data usage experience and acquisition intention of big data analytics [J]. International journal of information management, 2014, 34(3): 387–394.CrossRefGoogle Scholar
  37. [37]
    H. Jagadish, J. Gehrke, A. Labrinidis, et al. Big data and its technical challenges [J]. Communications of the ACM, 2014, 57(7): 86–94.CrossRefGoogle Scholar
  38. [38]
    J. Lundn, S. R. Kulkarni, V. Koivunen, et al. Multiagent reinforcement learning based spectrum sensing policies for cognitive radio networks [J]. IEEE journal of selected topics in signal processing, 2013, 7(5): 858–868.CrossRefGoogle Scholar
  39. [39]
    B. Wang, Y. Wu, K. R. Liu, et al. Clancy. An antijamming stochastic game for cognitive radio networks [J]. IEEE journal on selected areas in communications, 2011, 29(4): 877–889.CrossRefGoogle Scholar
  40. [40]
    K. Liu, Q. Zhao. Distributed learning in multi-armed bandit with multiple players [J]. IEEE transactions on signal processing, 2010, 58(11): 5667–5681.MathSciNetCrossRefGoogle Scholar
  41. [41]
    R. Kitchin. The real-time city? big data and smart urbanism [J]. GeoJournal, 2014, 79(1): 1–14.CrossRefGoogle Scholar
  42. [42]
    S. J. Pan, Q. Yang. A survey on transfer learning [J]. IEEE transactions on knowledge and data engineering, 2010, 22(10): 1345–1359.CrossRefGoogle Scholar
  43. [43]
    D. A. Ross, J. Lim, R.-S. Lin, et al. Incremental learning for robust visual tracking [J]. International journal of computer vision, 2008, 77(1-3): 125–141.CrossRefGoogle Scholar
  44. [44]
    K. W. Choi, E. Hossain. Estimation of primary user parameters in cognitive radio systems via hidden markov model [J]. IEEE transactions on signal processing, 2013, 61(3): 782–795.MathSciNetCrossRefGoogle Scholar
  45. [45]
    T. C. Fu. A review on time series data mining [J]. Engineering applications of artificial intelligence, 2011, 24(1): 164–181.CrossRefGoogle Scholar
  46. [46]
    N. I. Sapankevych, R. Sankar. Time series prediction using support vector machines: a survey [J]. IEEE computational intelligence magazine, 2009, 4(2): 24–38.CrossRefGoogle Scholar
  47. [47]
    S. Papadimitriou, J. Sun, C. Faloutso. Streaming pattern discovery in multiple time-series [C]//Proceedings of International Conference on Very Large Data Bases, 2005: 697–708.Google Scholar
  48. [48]
    J. Sun, D. Tao, S. Papadimitriou, et al. Incremental tensor analysis: theory and applications[J]. ACM transactions on knowledge discovery from data, 2008, 2(3): 1–37.CrossRefGoogle Scholar
  49. [49]
    S. Yu, M. Liu, W. Dou, et al. Networking for big data: A survey [J]. IEEE communications surveys and tutorials, 2016, 19(1): 531–549.CrossRefGoogle Scholar
  50. [50]
    V. Vapnik, R. Izmailov. Learning using privileged information: similarity control and knowledge transfer [J]. Journal of machine learning research, 2015, 16: 2023–2049.MathSciNetMATHGoogle Scholar
  51. [51]
    S. Han, Y. C. Liang, B. H. Soong. Spectrum refarming: a new paradigm of spectrum sharing for cellular networks [J]. IEEE transactions on communications, 2015, 63(5): 1895–1906.CrossRefGoogle Scholar
  52. [52]
    O. Mammela, P. Mannersalo. Cognitive wireless access selection at client side: performance study of a qlearning approach [C]//Proceedings of IEEE Network Operations and Management Symposium, 2014: 1–4.Google Scholar
  53. [53]
    H. Tabrizi, G. Farhadi, J. Cioffi. A learning-based network selection method in heterogeneous wireless systems [C]//Proceedings of IEEE Global Communications Conference, 2011: 1–5.Google Scholar
  54. [54]
    H. Tabrizi, G. Farhadi, J. Cio. Dynamic handoffdecision in heterogeneous wireless systems: Q-learning approach [C]//Proceedings of IEEE International Conference on Communications, 2012: 3217–3222.Google Scholar
  55. [55]
    M. Jordan, T. Mitchell. Machine learning: trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255–260.MathSciNetCrossRefMATHGoogle Scholar
  56. [56]
    L. Sorber, M. Van Barel, L. De Lathauwer. Structured data fusion [J]. IEEE journal of selected topics in signal processing, 2015, 9(4): 586–600.CrossRefGoogle Scholar
  57. [57]
    S. Yu. Big privacy: challenges and opportunities of privacy study in the age of big data [J]. IEEE access, 2016, 4: 2751–2763.CrossRefGoogle Scholar

Copyright information

© Posts & Telecom Press and Springer Singapore 2017

Authors and Affiliations

  1. 1.University of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations