Advertisement

The C6D6 detector system on the Back-n beam line of CSNS

  • Jie RenEmail author
  • Xichao Ruan
  • Jie Bao
  • Guangyuan Luan
  • Wei Jiang
  • Qi An
  • Huaiyong Bai
  • Ping Cao
  • Qiping Chen
  • Yonghao Chen
  • Pinjing Cheng
  • Zengqi Cui
  • Ruirui Fan
  • Changqing Feng
  • Minhao Gu
  • Fengqin Guo
  • Changcai Han
  • Zijie Han
  • Guozhu He
  • Yongcheng He
  • Yuefeng He
  • Hanxiong Huang
  • Weiling Huang
  • Xiru Huang
  • Xiaolu Ji
  • Xuyang Ji
  • Haoyu Jiang
  • Hantao Jing
  • Ling Kang
  • Mingtao Kang
  • Bo Li
  • Lun Li
  • Qiang Li
  • Xiao Li
  • Yang Li
  • Yang Li
  • Rong Liu
  • Shubin Liu
  • Xingyan Liu
  • Yinglin Ma
  • Changjun Ning
  • Binbin Qi
  • Zhaohui Song
  • Hong Sun
  • Xiaoyang Sun
  • Zhijia Sun
  • Zhixin Tan
  • Hongqing Tang
  • Jingyu Tang
  • Pengcheng Wang
  • Qi Wang
  • Taofeng Wang
  • Yanfeng Wang
  • Zhaohui Wang
  • Zheng Wang
  • Jie Wen
  • Zhongwei Wen
  • Qingbiao Wu
  • Xiaoguang Wu
  • Xuan Wu
  • Likun Xie
  • Yiwei Yang
  • Han Yi
  • Li Yu
  • Tao Yu
  • Yongji Yu
  • Guohui Zhang
  • Jing Zhang
  • Linhao Zhang
  • Liying Zhang
  • Qingmin Zhang
  • Qiwei Zhang
  • Xianpeng Zhang
  • Yuliang Zhang
  • Zhiyong Zhang
  • Yingtan Zhao
  • Liang Zhou
  • Zuying Zhou
  • Danyang Zhu
  • Kejun Zhu
  • Peng Zhu
Original Paper
  • 22 Downloads

Abstract

Introduction

The neutron capture cross sections are very important in the field of nuclear device design and basic physics research. Hydrogen-free liquid scintillator such as C6D6 detectors are widely used in the neutron capture cross-sectional measurements for the low neutron sensitivity and fast time response. The Back-n white neutron source at China Spallation Neutron Source is the first spallation white neutron source in China, and it is suitable for neutron capture cross-sectional measurement.

Materials and methods

A C6D6 detector system was built in the Back-n experimental station. The pulse height weighting technique was used to determine the system’s detection efficiency. The response to gamma rays of the C6D6 detector was measured, and the energy resolution function was determined. Monte Carlo simulation with Geant4 code was carried out to get the weighting function of this C6D6 detector system. Additionally, the systematic uncertainty of the weighting function was also determined.

Conclusion

According to the experimental and simulation results, this C6D6 detector system can be used to measure neutron capture cross section.

Keywords

C6D6 detector PHWT Neutron capture cross section White neutron source 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11790321 and 11805282) and the National Key R&D Program of China (Grant No. 2016YFA0401601).

References

  1. 1.
    C.D. Bowman, Accelerator-driven systems for nuclear waste transmutation. Annu. Rev. Nucl. Part. Sci. 48, 505 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    F. Kappeler, H. Beer, K. Wisshak, S-process nucleosynthesis: nuclear physics and the classical model. Rep. Prog. Phys. 52, 945 (1989).  https://doi.org/10.1088/0034-4885/52/8/002 ADSCrossRefGoogle Scholar
  3. 3.
    L.C. Mihailescu, L. Oláh, C. Borcea et al., A new HPGe setup at Gelina for measurement of gamma-ray production cross-sections from inelastic neutron scattering. Nucl. Instrum. Methods A 531(3), 375–391 (2004).  https://doi.org/10.1016/j.nima.2004.05.119 ADSCrossRefGoogle Scholar
  4. 4.
    C. Guerrero, U. Abbondanno, G. Aerts et al., The n_TOF total absorption calorimeter for neutron capture measurements at CERN. Nucl. Instrum. Methods A 608, 424–433 (2009).  https://doi.org/10.1016/j.nima.2009.07.025 ADSCrossRefGoogle Scholar
  5. 5.
    B. Baramsai, G.E. Mitchell et al., Neutron resonance parameters in 155Gd measured with the DANCE γ-ray calorimeter array. Phys. Rev. C 85, 024622-13 (2012).  https://doi.org/10.1103/PhysRevC.85.024622 ADSCrossRefGoogle Scholar
  6. 6.
    M.C. Moxon, E.R. Rae, A gamma-ray detector for neutron capture cross section measurements. Nucl. Instrum. Methods A 24, 445 (1963).  https://doi.org/10.1016/0029-554x(63)90364-1 CrossRefGoogle Scholar
  7. 7.
    F. Corvi, C. Bastian, K. Wisshak, Neutron capture in the 1.15 keV resonance of 56Fe using Moxon-Rae detectors. Nucl. Sci. Eng. 93(4), 348–358 (1986)CrossRefGoogle Scholar
  8. 8.
    J.N. Wilson, B. Haas, S. Boyer et al., Measurements of (n, γ) neutron capture cross-section with liquid scintillator detectors. Nucl. Instrum. Methods A 511(2003), 388–399 (2003).  https://doi.org/10.1016/s0168-9002(03)01944-2 ADSCrossRefGoogle Scholar
  9. 9.
    J.Y. Tang, S.N. Fu, H.T. Jing et al., Proposal for muon and white neutron sources at CSNS. Chin. Phys. C 34, 121–125 (2010).  https://doi.org/10.1088/1674-1137/34/1/022 ADSCrossRefGoogle Scholar
  10. 10.
    H. Chen, X.L. Wang, China’s first pulsed neutron source. Nat. Mater. 15, 689 (2016).  https://doi.org/10.1038/nmat4655 ADSCrossRefGoogle Scholar
  11. 11.
    H.T. Jing, J.Y. Tang, H.Q. Tang, H.H. Xia et al., Studies of back-streaming white neutrons at CSNS. Nucl. Instrum. Methods A 621, 91–96 (2010).  https://doi.org/10.1016/j.nima.2010.06.097 ADSCrossRefGoogle Scholar
  12. 12.
    Q. An, H.Y. Bai, J. Bao et al., Back-n white neutron facility for nuclear data measurement at CSNS. J. Instrum. 12, 7–22 (2017).  https://doi.org/10.1088/1748-0221/12/07/P07022 CrossRefGoogle Scholar
  13. 13.
    J. Ren, R. Xichao, H. Tang et al., Simulation of the background of experimental end-stations and the collimator system of the CSNS back-streaming white neutron source. Nucl. Tech. 37(10), 210–215 (2014).  https://doi.org/10.11889/j.0253-3219.2014.hjs.37.100521 CrossRefGoogle Scholar
  14. 14.
    EJ-315 deuterated liquid scintillator data sheet, www.eljentechnology.com. Accessed 5 Nov 2017
  15. 15.
    B series data sheet, www.electrontubes.com. Accessed 5 Nov 2017
  16. 16.
    Q. Wang, P. Cao, X. Qi et al., General-purpose readout electronics for white neutron source at China Spallation Neutron Source. Rev. Sci. Instrum. 89, 013511 (2018).  https://doi.org/10.1063/1.5006346 ADSCrossRefGoogle Scholar
  17. 17.
    G. Dietze, H. Klein, Gamma-calibration of NE 213 scintillation counters. Nucl. Instrum. Methods Phys. Res. 193(3), 549–556 (1982).  https://doi.org/10.1016/0029-554X(82)90249-X ADSCrossRefGoogle Scholar
  18. 18.
    Geant4 Collaboration, GEANT4 User’s Guide for Application Developers (version:10.2), http://geant4.cern.ch. Accessed 4 Dec 2015
  19. 19.
    C.D. Pardo, New radiative neutron capture measurement of 207Pb and 209Bi. Ph.D. thesis, CSIC-University of Valencia, 2005Google Scholar
  20. 20.
    R. Plag, M. Heil, F. Kappeler et al., An optimized C6D6 detector for studies of resonance-dominated (n, γ) cross-sections. Nucl. Instrum. Methods A 496, 425–436 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    P. Schillebeeckx, B. Becker, Y. Danon et al., Determination of resonance parameters and their covariances from neutron induced reaction cross section data. Nucl. Data Sheets 113(12), 3054–3100 (2012).  https://doi.org/10.1016/j.nds.2012.11.005 ADSCrossRefGoogle Scholar
  22. 22.
    U. Abbondanno, G. Aerts, H. Alvarez et al., New experimental validation of the pulse height weighting technique for capture cross-section measurements. Nucl. Instrum. Methods A 521, 454–467 (2004).  https://doi.org/10.1016/j.nima.2003.09.066 ADSCrossRefGoogle Scholar
  23. 23.
    R.L. Macklin, J.H. Gibbons, Capture-cross-section studies for 30–220-keV neutrons using a new technique. Phys. Rev. 159, 1007 (1967).  https://doi.org/10.1103/physrev.159.1007 ADSCrossRefGoogle Scholar
  24. 24.
    J.L. Tain, F. Gunsing, D. Cano et al., Accuracy of the pulse height weighting technique for capture cross section measurements. J. Nucl. Sci. Technol. 39, 689–692 (2002).  https://doi.org/10.1080/00223131.2002.10875193 CrossRefGoogle Scholar
  25. 25.
    F. James, MINUIT turorial, (1972), http://seal.web.cern.ch. Accessed 14 Mar 2017
  26. 26.
    F. Corvi, A. Prevignano, H. Liskien et al., An experimental method for determining the total efficiency and the response function of a gamma-ray detector in the range 0.5–10 MeV. Nucl. Instrum. Methods A 265(3), 475–484 (1988).  https://doi.org/10.1016/s0168-9002(98)90016-x ADSCrossRefGoogle Scholar
  27. 27.
    Geant4 Collaboration, GEANT4 Physics Reference Manual (version: 10.2), http://geant4.cern.ch. Accessed 4 Dec 2015

Copyright information

© Institute of High Energy Physics, Chinese Academy of Sciences; Nuclear Electronics and Nuclear Detection Society 2019

Authors and Affiliations

  • Jie Ren
    • 1
    Email author
  • Xichao Ruan
    • 1
  • Jie Bao
    • 1
  • Guangyuan Luan
    • 1
  • Wei Jiang
    • 2
    • 3
  • Qi An
    • 4
    • 5
  • Huaiyong Bai
    • 6
  • Ping Cao
    • 4
    • 5
  • Qiping Chen
    • 7
  • Yonghao Chen
    • 2
    • 3
  • Pinjing Cheng
    • 8
  • Zengqi Cui
    • 6
  • Ruirui Fan
    • 2
    • 3
    • 4
  • Changqing Feng
    • 4
    • 5
  • Minhao Gu
    • 2
    • 4
  • Fengqin Guo
    • 2
    • 3
  • Changcai Han
    • 9
  • Zijie Han
    • 7
  • Guozhu He
    • 1
  • Yongcheng He
    • 2
    • 3
  • Yuefeng He
    • 8
  • Hanxiong Huang
    • 1
  • Weiling Huang
    • 2
    • 3
  • Xiru Huang
    • 4
    • 5
  • Xiaolu Ji
    • 2
    • 4
  • Xuyang Ji
    • 4
    • 10
  • Haoyu Jiang
    • 3
  • Hantao Jing
    • 2
    • 3
  • Ling Kang
    • 2
    • 3
  • Mingtao Kang
    • 2
    • 3
  • Bo Li
    • 2
    • 3
  • Lun Li
    • 2
    • 3
  • Qiang Li
    • 2
    • 3
  • Xiao Li
    • 2
    • 3
  • Yang Li
    • 2
    • 4
  • Yang Li
    • 2
    • 3
  • Rong Liu
    • 7
  • Shubin Liu
    • 4
    • 5
  • Xingyan Liu
    • 7
  • Yinglin Ma
    • 2
    • 3
  • Changjun Ning
    • 2
    • 3
  • Binbin Qi
    • 4
  • Zhaohui Song
    • 9
  • Hong Sun
    • 2
    • 3
  • Xiaoyang Sun
    • 2
    • 3
  • Zhijia Sun
    • 2
    • 3
    • 4
  • Zhixin Tan
    • 2
    • 3
  • Hongqing Tang
    • 1
  • Jingyu Tang
    • 2
    • 3
  • Pengcheng Wang
    • 2
    • 3
  • Qi Wang
    • 1
  • Taofeng Wang
    • 12
  • Yanfeng Wang
    • 2
    • 3
  • Zhaohui Wang
    • 1
  • Zheng Wang
    • 2
    • 3
  • Jie Wen
    • 7
  • Zhongwei Wen
    • 7
  • Qingbiao Wu
    • 2
    • 3
  • Xiaoguang Wu
    • 1
  • Xuan Wu
    • 2
    • 3
  • Likun Xie
    • 4
    • 10
  • Yiwei Yang
    • 7
  • Han Yi
    • 2
    • 3
  • Li Yu
    • 4
    • 5
  • Tao Yu
    • 4
    • 5
  • Yongji Yu
    • 2
    • 3
  • Guohui Zhang
    • 6
  • Jing Zhang
    • 2
    • 3
  • Linhao Zhang
    • 2
    • 3
  • Liying Zhang
    • 2
    • 3
    • 4
  • Qingmin Zhang
    • 11
  • Qiwei Zhang
    • 1
  • Xianpeng Zhang
    • 9
  • Yuliang Zhang
    • 2
    • 3
  • Zhiyong Zhang
    • 4
    • 5
  • Yingtan Zhao
    • 11
  • Liang Zhou
    • 2
    • 3
  • Zuying Zhou
    • 1
  • Danyang Zhu
    • 5
  • Kejun Zhu
    • 2
    • 4
  • Peng Zhu
    • 2
    • 3
  1. 1.Key Laboratory of Nuclear DataChina Institute of Atomic EnergyBeijingChina
  2. 2.Institute of High Energy PhysicsChinese Academy of Sciences (CAS)BeijingChina
  3. 3.Dongguan Neutron Science CenterDongguanChina
  4. 4.State Key Laboratory of Particle Detection and ElectronicsHefeiChina
  5. 5.Department of Modern PhysicsUniversity of Science and Technology of ChinaHefeiChina
  6. 6.State Key Laboratory of Nuclear Physics and Technology, School of PhysicsPeking UniversityBeijingChina
  7. 7.Institute of Nuclear Physics and ChemistryChina Academy of Engineering PhysicsMianyangChina
  8. 8.University of South ChinaHengyangChina
  9. 9.Northwest Institute of Nuclear TechnologyXi’anChina
  10. 10.Department of Engineering and Applied PhysicsUniversity of Science and Technology of ChinaHefeiChina
  11. 11.Xi’an Jiaotong UniversityXi’anChina
  12. 12.Beihang UniversityBeijingChina

Personalised recommendations