Skip to main content
Log in

The C6D6 detector system on the Back-n beam line of CSNS

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Introduction

The neutron capture cross sections are very important in the field of nuclear device design and basic physics research. Hydrogen-free liquid scintillator such as C6D6 detectors are widely used in the neutron capture cross-sectional measurements for the low neutron sensitivity and fast time response. The Back-n white neutron source at China Spallation Neutron Source is the first spallation white neutron source in China, and it is suitable for neutron capture cross-sectional measurement.

Materials and methods

A C6D6 detector system was built in the Back-n experimental station. The pulse height weighting technique was used to determine the system’s detection efficiency. The response to gamma rays of the C6D6 detector was measured, and the energy resolution function was determined. Monte Carlo simulation with Geant4 code was carried out to get the weighting function of this C6D6 detector system. Additionally, the systematic uncertainty of the weighting function was also determined.

Conclusion

According to the experimental and simulation results, this C6D6 detector system can be used to measure neutron capture cross section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C.D. Bowman, Accelerator-driven systems for nuclear waste transmutation. Annu. Rev. Nucl. Part. Sci. 48, 505 (1998)

    Article  ADS  Google Scholar 

  2. F. Kappeler, H. Beer, K. Wisshak, S-process nucleosynthesis: nuclear physics and the classical model. Rep. Prog. Phys. 52, 945 (1989). https://doi.org/10.1088/0034-4885/52/8/002

    Article  ADS  Google Scholar 

  3. L.C. Mihailescu, L. Oláh, C. Borcea et al., A new HPGe setup at Gelina for measurement of gamma-ray production cross-sections from inelastic neutron scattering. Nucl. Instrum. Methods A 531(3), 375–391 (2004). https://doi.org/10.1016/j.nima.2004.05.119

    Article  ADS  Google Scholar 

  4. C. Guerrero, U. Abbondanno, G. Aerts et al., The n_TOF total absorption calorimeter for neutron capture measurements at CERN. Nucl. Instrum. Methods A 608, 424–433 (2009). https://doi.org/10.1016/j.nima.2009.07.025

    Article  ADS  Google Scholar 

  5. B. Baramsai, G.E. Mitchell et al., Neutron resonance parameters in 155Gd measured with the DANCE γ-ray calorimeter array. Phys. Rev. C 85, 024622-13 (2012). https://doi.org/10.1103/PhysRevC.85.024622

    Article  ADS  Google Scholar 

  6. M.C. Moxon, E.R. Rae, A gamma-ray detector for neutron capture cross section measurements. Nucl. Instrum. Methods A 24, 445 (1963). https://doi.org/10.1016/0029-554x(63)90364-1

    Article  Google Scholar 

  7. F. Corvi, C. Bastian, K. Wisshak, Neutron capture in the 1.15 keV resonance of 56Fe using Moxon-Rae detectors. Nucl. Sci. Eng. 93(4), 348–358 (1986)

    Article  Google Scholar 

  8. J.N. Wilson, B. Haas, S. Boyer et al., Measurements of (n, γ) neutron capture cross-section with liquid scintillator detectors. Nucl. Instrum. Methods A 511(2003), 388–399 (2003). https://doi.org/10.1016/s0168-9002(03)01944-2

    Article  ADS  Google Scholar 

  9. J.Y. Tang, S.N. Fu, H.T. Jing et al., Proposal for muon and white neutron sources at CSNS. Chin. Phys. C 34, 121–125 (2010). https://doi.org/10.1088/1674-1137/34/1/022

    Article  ADS  Google Scholar 

  10. H. Chen, X.L. Wang, China’s first pulsed neutron source. Nat. Mater. 15, 689 (2016). https://doi.org/10.1038/nmat4655

    Article  ADS  Google Scholar 

  11. H.T. Jing, J.Y. Tang, H.Q. Tang, H.H. Xia et al., Studies of back-streaming white neutrons at CSNS. Nucl. Instrum. Methods A 621, 91–96 (2010). https://doi.org/10.1016/j.nima.2010.06.097

    Article  ADS  Google Scholar 

  12. Q. An, H.Y. Bai, J. Bao et al., Back-n white neutron facility for nuclear data measurement at CSNS. J. Instrum. 12, 7–22 (2017). https://doi.org/10.1088/1748-0221/12/07/P07022

    Article  Google Scholar 

  13. J. Ren, R. Xichao, H. Tang et al., Simulation of the background of experimental end-stations and the collimator system of the CSNS back-streaming white neutron source. Nucl. Tech. 37(10), 210–215 (2014). https://doi.org/10.11889/j.0253-3219.2014.hjs.37.100521

    Article  Google Scholar 

  14. EJ-315 deuterated liquid scintillator data sheet, www.eljentechnology.com. Accessed 5 Nov 2017

  15. B series data sheet, www.electrontubes.com. Accessed 5 Nov 2017

  16. Q. Wang, P. Cao, X. Qi et al., General-purpose readout electronics for white neutron source at China Spallation Neutron Source. Rev. Sci. Instrum. 89, 013511 (2018). https://doi.org/10.1063/1.5006346

    Article  ADS  Google Scholar 

  17. G. Dietze, H. Klein, Gamma-calibration of NE 213 scintillation counters. Nucl. Instrum. Methods Phys. Res. 193(3), 549–556 (1982). https://doi.org/10.1016/0029-554X(82)90249-X

    Article  ADS  Google Scholar 

  18. Geant4 Collaboration, GEANT4 User’s Guide for Application Developers (version:10.2), http://geant4.cern.ch. Accessed 4 Dec 2015

  19. C.D. Pardo, New radiative neutron capture measurement of 207Pb and 209Bi. Ph.D. thesis, CSIC-University of Valencia, 2005

  20. R. Plag, M. Heil, F. Kappeler et al., An optimized C6D6 detector for studies of resonance-dominated (n, γ) cross-sections. Nucl. Instrum. Methods A 496, 425–436 (2003)

    Article  ADS  Google Scholar 

  21. P. Schillebeeckx, B. Becker, Y. Danon et al., Determination of resonance parameters and their covariances from neutron induced reaction cross section data. Nucl. Data Sheets 113(12), 3054–3100 (2012). https://doi.org/10.1016/j.nds.2012.11.005

    Article  ADS  Google Scholar 

  22. U. Abbondanno, G. Aerts, H. Alvarez et al., New experimental validation of the pulse height weighting technique for capture cross-section measurements. Nucl. Instrum. Methods A 521, 454–467 (2004). https://doi.org/10.1016/j.nima.2003.09.066

    Article  ADS  Google Scholar 

  23. R.L. Macklin, J.H. Gibbons, Capture-cross-section studies for 30–220-keV neutrons using a new technique. Phys. Rev. 159, 1007 (1967). https://doi.org/10.1103/physrev.159.1007

    Article  ADS  Google Scholar 

  24. J.L. Tain, F. Gunsing, D. Cano et al., Accuracy of the pulse height weighting technique for capture cross section measurements. J. Nucl. Sci. Technol. 39, 689–692 (2002). https://doi.org/10.1080/00223131.2002.10875193

    Article  Google Scholar 

  25. F. James, MINUIT turorial, (1972), http://seal.web.cern.ch. Accessed 14 Mar 2017

  26. F. Corvi, A. Prevignano, H. Liskien et al., An experimental method for determining the total efficiency and the response function of a gamma-ray detector in the range 0.5–10 MeV. Nucl. Instrum. Methods A 265(3), 475–484 (1988). https://doi.org/10.1016/s0168-9002(98)90016-x

    Article  ADS  Google Scholar 

  27. Geant4 Collaboration, GEANT4 Physics Reference Manual (version: 10.2), http://geant4.cern.ch. Accessed 4 Dec 2015

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11790321 and 11805282) and the National Key R&D Program of China (Grant No. 2016YFA0401601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Ruan, X., Bao, J. et al. The C6D6 detector system on the Back-n beam line of CSNS. Radiat Detect Technol Methods 3, 52 (2019). https://doi.org/10.1007/s41605-019-0129-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41605-019-0129-8

Keywords

Navigation