Skip to main content

Advertisement

Log in

Biocompatibility of erbium chromium-doped yattrium-scandium-gallium-garnet (Er,Cr:YSGG 2780 nm) laser-treated titanium alloy used for dental applications (in vitro study)

  • Original Article
  • Published:
Lasers in Dental Science Aims and scope Submit manuscript

Abstract

The use of dental implants in the partial and complete edentulism has become the primary treatment regimen in the modern dentistry. Erbium chromium-doped yattrium-scandium-gallium-garnet (Er,Cr:YSGG) laser is most often used in dentistry in implant surgery and management of peri-implantitis. The aim of the present study was to assess the biocompatibility of Er,Cr:YSGG laser-treated titanium alloy (Ti-6Al-4V) and its surface characteristics to understand the impact of the laser on the titanium alloy surfaces.

Materials and methods

A total of 20 discs of titanium alloy (Ti-6Al-4V) were used. Ten discs were irradiated with Er,Cr:YSGG laser which was operating in a normal room atmosphere and temperature at power 2 W. Biocompatibility was investigated in vitro via MTT assay. Surface analysis of laser-treated and laser-untreated discs was examined with a scanning electron microscope.

Result

Laser-treated group showed superior cell viability compared to untreated group. No undesirable changes were observed by SEM.

Conclusion

We can conclude that Er,Cr:YSGG laser safely could improve the biocompatibility of dental implant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Seth S, Kalra P (2013) Effect of dental implant parameters on stress distribution at bone-implant interfaces. Inter J Sci Res 2:121–124

    Google Scholar 

  2. Abdel-Hady Gepreel M, Niinomi M (2013) Biocompatibility of Ti-alloys for long-term implantation. J Mech Behav Biomed Mate 20:407–415

    Article  Google Scholar 

  3. Yamazoe J, Nakagawa M, Matono Y, Takeuchi A, Ishikawa K (2007) The development of Ti alloys for dental implant with high corrosion resistance and mechanical strength. Dent Mater J 26:260–267

    Article  PubMed  Google Scholar 

  4. Piotrowski B, Baptista AA, Patoor E, Bravetti P, Eberhardt A, Laheurte P (2014) Interaction of bone-dental implant with new ultra low modulus alloy using a numerical approach. Mater Sci Engin C 38:151–160

    Article  Google Scholar 

  5. Koike M, Hummel SK, Ball JD, Okabe T (2012) Fabrication of titanium removable dental prosthesis frameworks with a 2-step investment coating method. J Prosthet Dent 107:393–399

    Article  PubMed  Google Scholar 

  6. Baltriukiene D, Sabaliuskas V, Balciusas E, Melninkaitis A, Liufkelskene E, Bukelskiene V (2014) The effect of laser-treated titanium surface on human gingival fibroblast behavior. J Biomed Mater Res A 102(3):713–720

    Article  PubMed  Google Scholar 

  7. Kearns VR, Williams RL, Mirvakily F, Doberty PJ, Martin N (2013) Guided gingival fibroblast attachment to titanium surface: an in vitro study. J Clin Periodontol 40(1):99–108

    Article  PubMed  Google Scholar 

  8. O’Brien WJ (2009) Dental materials and their selection, 4th edn. Quintessence Publishing, Chicago, p 23

    Google Scholar 

  9. Frankova J, Pivodova V, Ruzicka F, Tomankova K, Vrlkova J (2013) Comparing biocompatibility of gingival fibroblast and bacterial strains on a different modified titanium discs. J Biomed Mater Res A 101(10):2915–2924

    Article  PubMed  Google Scholar 

  10. Arisan V, Karabuda CZ, Ozdemir T (2010) Implant surgery using bone- and mucosa-supported stereolithographic guides in totally edentulous jaws: surgical and post-operative outcomes of computer-aided vs.standard techniques. Clin Oral Implants Res 21(9):980–988

    PubMed  Google Scholar 

  11. Nickenig H-J, Wichmann M, Schlegel KA, Nkenke E, Eitner S (2010) Radiographic evaluation of marginal bone levels during healing period, adjacent to parallel-screw cylinder implants inserted in the posterior zone of the jaws, placed with flapless surgery. Clin Oral Implants Res 21(12):1386–1393

    Article  PubMed  Google Scholar 

  12. Pourzarandian A, Watanabe H, Aoki A, Ichinose S, Sasaki KM, Nitta H, Ishikawa I (2004) Histological and TEM examination of early stages of bone healing after Er:YAG laser irradiation. Photomed Laser Surg 22(4):342–350

    Article  PubMed  Google Scholar 

  13. Yoshino T, Aoki A, Oda S, Takasaki AA, Mizutani K, Sasaki KM, Kinoshita A, Watanabe H, Ishikawa I, Izumi Y (2009) Long-term histologic analysis of bone tissue alteration and healing following Er:YAG laser irradiation compared to electrosurgery. J Periodontol 80(1):82–92

    Article  PubMed  Google Scholar 

  14. Garg AK (2007) Lasers in dental implantology: innovation improves patient care. Dent Implantol 18:57–61

    Google Scholar 

  15. Featherstone JD (2000) Caries detection and prevention with laser energy. In: Convissar FA (ed) Dent Clin North Am, vol 44. Saunders, Philadelphia, pp 955–966

    Google Scholar 

  16. Gimbel CB (2000) Hard tissue procedures. In: Convissar FA (ed) Dent Clin North Am, vol 44. Saunders, Philadelphia, pp 931–948

    Google Scholar 

  17. Kim S-W, Kwon Y-H, Chung J-H, Shin S-I, Herr Y (2010) The effect of Er:YAG laser irradiation on the surface microstructure and roughness of hydroxyapatite-coated implant. J Periodontal Implant Sci 40:276–282

    Article  PubMed  PubMed Central  Google Scholar 

  18. Matsumoto K, Hossain MM, Kawano H, Kimura Y (2002) Clinical assessment of Er,Cr: YSGG laser application for cavity preparation. J Clin Laser Med Surg 20:17–21

    Article  PubMed  Google Scholar 

  19. Gomez-Santos L, Arnabat-Dominguez J, Sierra-Rebolledo A, Gay-Escoda C (2010) Thermal increment due to Er,Cr:YSGG and CO2 laser irradiation of different implant surfaces. A pilot study. Med Oral Patol Oral Cir Bucal 15:782–787

    Article  Google Scholar 

  20. Lee JH, Heo SJ, Koak JY, Kim SK, Lee SJ, Lee SH (2008) Cellular responses on anodized titanium discs after laser irradiation. Lasers Surg Med 40:738–742

    Article  PubMed  Google Scholar 

  21. Park JH, Heo SJ, Koak JY, Kim SK, Han CH, Lee JH (2012) Effects of laser irradiation on machined and anodized titanium disks. Int J Oral Maxillofac Implants 27:265–272

    PubMed  Google Scholar 

  22. Wataha JC, Lockwood PE, Bouillaguet S, Noda M (2003) In vitro biological response to core and flowable dental restorative materials. Dent Mater 19:25–31

    Article  PubMed  Google Scholar 

  23. Issa Y, Watts DC, Brunton PA, Waters CM, Duxbury AJ (2004) Resin composite monomers alter MTT and LDH activity of human gingival fibroblasts in vitro. Dent Mater 20:12–20

    Article  PubMed  Google Scholar 

  24. Bonakdar S et al (2010) Preparation and characterization of polyvinyl alcohol hydrogels crosslinked by biodegradable polyurethane for tissue engineering of cartilage. Mater Sci Eng C 30(4):636–643

    Article  Google Scholar 

  25. Kim HJ, Kim SH, Kim MS, Lee EJ, Oh HG, Oh WM, Park SW, Kim WJ, Lee GJ, Choi NG, Koh JT, Dinh DB, Hardin RR, Johnson K, Sylvia VL, Schmitz JP, Dean DD (2005) Varying Ti-6Al-4V surface roughness induces different early morphologic and molecular responses in MG63osteoblast-like cells. J Biomed Mater Res A 74(3):366–373

    Article  PubMed  Google Scholar 

  26. Nothdurft FP, Fontana D, Ruppenthal S, May A, Aktas C, Mehraein Y (2014) Differential behavior of fibroblasts and epithelial cells on structured implant abutment materials: a comparison of materials and surface topographies. Clin Implant Dent Relat Res 16:640–648

    Google Scholar 

  27. Atapour M, Pilchak A, Frankel GS, Williams JC, Fathi MH, Shamanian M (2010) Corrosion behavior of Ti-6Al-4V with different thermomechanical treatments and microstructures. Corrosion 66(6):1–9

    Article  Google Scholar 

  28. Martin E (2004) Lasers in dental implantology. Dent Clin North Am 48:999–1015

    Article  PubMed  Google Scholar 

  29. Kreisler M, Gotz H, Duschner H (2002) Effect of Nd:YAG, Ho: YAG, Er:YAG, CO2, and GaAIAs laser irradiation on surface properties of endosseous dental implants. Int J Oral Maxillofac Implants 17:202–211

    PubMed  Google Scholar 

  30. Kotsovilis S, Karoussis IK, Trianti M, Fourmousis I (2008) Therapy of peri-implantitis: a systematic review. J Clin Periodontol 35:621–629

    Article  PubMed  Google Scholar 

  31. Miller RJ (2004) Treatment of the contaminated implant surface using Er,Cr:YSGG laser. Implant Dent 13:165–170

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalia A. Abd El daym.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd El daym, D.A., Gheith, M.E., Abbas, N.A. et al. Biocompatibility of erbium chromium-doped yattrium-scandium-gallium-garnet (Er,Cr:YSGG 2780 nm) laser-treated titanium alloy used for dental applications (in vitro study). Laser Dent Sci 2, 119–124 (2018). https://doi.org/10.1007/s41547-018-0029-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41547-018-0029-0

Keywords

Navigation