Ophiolitic rocks and plagiorhyolites from SW Ecuador (Cerro San José): petrology, geochemistry and tectonic setting

Abstract

This work investigates the petrology and geochemistry of ophiolitic rocks that belong to basalt formations of Cretaceous age and outcrop south of Nobol (Guayas, Ecuador). We studied their petrogenesis and tried to establish the tectonic setting and correlations with the regional geology. These mafic rocks, together with associated felsic dykes, are interpreted to be part of an ophiolite sequence (Cerro de San José). Our results show that the mafic rocks are iron rich tholeiitic basalts (Fe2O3t = 13–14.7 wt%), with arc geochemical signature. The associated felsic dykes are trondhjemites (Na2O = 6.5 wt%; K2O = 0.1 wt%) and can be interpreted as plagiorhyolites derived by partial melting of a hydrated mafic oceanic crust. The tectonic setting proposed for these rocks is an arc or back-arc basin where infiltration of melts/fluids derived from a subducted slab and its mantle wedge could have generated the arc signature of these tholeiitic basalts. Furthermore, these melts/fluids could also have induced partial melting of country rock basalts and generation of plagiorhyolite dykes.

Resumen

En este trabajo se investiga la petrología y la geoquímica de las rocas ofiolíticas que afloran al sur de Nobol (Guayas, Ecuador), pertenecientes a formaciones basálticas Cretácicas. Se estudia su petrogénesis y se intenta establecer el contexto tectónico y las relaciones con la geología regional. Estas rocas máficas, junto con diques félsicos asociados, se interpretan como parte de una secuencia ofiolítica (Cerro de San José). Nuestros resultados muestran que las rocas máficas son basaltos toleíticos ricos en hierro (Fe2O3t = 13-14.7 % en peso), con características geoquímicas de arco volcánico. Los diques félsicos asociados son trondhjemitas (Na2O = 6.5 % en peso; K2O = 0.1 % en peso) y pueden interpretarse como plagioriolitas o plagiogranitos derivados de la fusión parcial de una corteza oceánica máfica hidratada. La situación tectónica propuesta para estas rocas es una cuenca de arco o tras-arco donde la infiltración de fundidos/fluidos, derivados de una placa subducente y de su manto suprayacente, podrían haber generado la afinidad de arco de estos basaltos toleíticos. Además, estos fundidos/fluidos también podrían haber inducido la fusión parcial de basaltos adyacentes y la generación de plagioriolitas.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Alcívar-Aguilera, R. A. (2018). Petrogénesis de los afloramientos de la FM Piñón (Cretáceo), ubicados en el sector sur, Cerro La Germania, Provincia del Guayas. Bachelor's thesis, Facultad de Ciencias Naturales, Guayaquil University.

  2. Allibon, J., Monjoie, P., Lapierre, H., Jaillard, E., Bussy, F., Bosch, D., & Senebier, F. (2008). The contribution of the young Cretaceous Caribbean oceanic plateau to the genesis of late Cretaceous arc magmatism in the cordillera occidental of Ecuador. Journal of South American Earth Sciences, 26(4), 355–368.

    Article  Google Scholar 

  3. Altamira, A., & Burke, K. (2015). The Ribbon Continent of South America in Ecuador, Colombia, and Venezuela. In C. Bartolini & P. Mann (Eds.), Petroleum geology and potential of the Colombian Caribbean Margin, vol. 108 (pp. 39–84). Tulsa: Association of Petroleum Geologists Memoir.

    Google Scholar 

  4. Aspden, J. A., & Litherland, M. (1992). The geology and Mesozoic collisional history of the Cordillera Real, Ecuador. Tectonophysics, 205(1–3), 187–204.

    Article  Google Scholar 

  5. Aspden, J. A., McCourt, W. J., & Brook, M. (1987). Geometrical control of subduction-related magmatism: The Mesozoic and Cenozoic plutonic history of Western Colombia. Journal of the Geological Society, 144, 893–905.

    Article  Google Scholar 

  6. Benitez, S. B. (1995). Evolution géodynamique de la province côtière sud-équatorienneau Crétacé supérieure Tertiaire. Ph.D. Thesis: Joseph-Fourier University-Grenoble France.

  7. BGS-CODIGEM. (1983). Mapa Geologico de la República Del Ecuador. Escala, 1:1000000.

  8. Borrero, C., Pardo, A., Jaramillo, C. M., Osorio, J. A., Cardona, A., Flores, A., et al. (2012). Tectonostratigraphy of the Cenozoic Tumaco forearc basin (Colombian Pacific and its relationship with the northern Andes orogenic build up. Journal of South American Earth Sciences, 39, 75–92.

    Article  Google Scholar 

  9. Boynton, W. V. (1984). Cosmochemistry of the rare earth elements: Meteorite studies. In P. Henderson (Ed.), Developments in geochemistry (pp. 63–114). Amsterdam: Elsevier.

    Google Scholar 

  10. Bristow, C. R. (1976). The age of the Cayo Formation, Ecuador. Newsletters on Stratigraphy, 4, 169–173.

    Article  Google Scholar 

  11. Brophy, J. G. (2009). La-SiO2 and Yb-SiO2 systematics in mid-ocean ridge magmas: implication for the origin of oceanic plagiogranite. Contributions to Mineralogy and Petrology, 158, 99–111.

    Article  Google Scholar 

  12. Campbell, J. C. (1974). Ecuadorian Andes. In A. M. Spencer (Ed.), Mesozoic–Cenozoic Orogenic belts; Data for Orogenic studies (pp. 725–732). London: Geological Society London Special Publications.

    Google Scholar 

  13. Cediel, F., Shaw, R., & Cáceres, C. (2003). Tectonic assembly of the northern Andean block. Association of Petroleum Geologists Memoir, 79, 815–848.

    Google Scholar 

  14. Feininger, T., & Bristow, C. R. (1980). Cretaceous and Paleogene geologic history of coastal Ecuador. Geologische Rundschau, 69(3), 849–874.

    Article  Google Scholar 

  15. Gansser, A. (1973). Facts and theories on the Andes: Twenty-sixth William Smith Lecture. Journal of the Geological Society, 129(2), 93–131.

    Article  Google Scholar 

  16. Geist, D., Howard, K. A., & Larson, P. (1995). The generation of oceanic rhyolites by crystal fractionation: The basalt-rhyolite association at Volcán Alcedo, Galapagos Archipiélago. Journal of Petrology, 36(4), 965–982.

    Article  Google Scholar 

  17. Gillis, K. M., & Coogan, L. A. (2002). Anatectic migmatites from the roof of an ocean ridge magma chamber. Journal of Petrology, 43, 2075–2095.

    Article  Google Scholar 

  18. Goossens, P. J., & Rose, W. I. (1973). Chemical composition and age determination of tholeitic rocks in the basic Cretaceous complex, Ecuador. Geological Society of America Bulletin, 84(3), 1043–1052.

    Article  Google Scholar 

  19. Goossens, P. J., Rose, W. I., & Flores, D. (1977). Geochemistry of tholeites of the basic igneous complex of Northwestern South America. Geological Society of America Bulletin, 88(12), 1711–1720.

    Article  Google Scholar 

  20. Grant, J. A. (1986). The isocon diagram—a simple solution to Gresens equation for metasomatic alteration. Economic Geology, 81, 1976–1982.

    Article  Google Scholar 

  21. Grant, J. A. (2005). Isocon analysis: A brief review of the method and applications. Physics and Chemistry of the Earth (Part A), 30(17–18), 997–1004.

    Article  Google Scholar 

  22. Green, E. C. R., White, R. W., Diener, J. F. A., Powell, R., Holland, T. J. B., & Palin, R. M. (2016). Activity-composition relations for the calculation of partial melting equilibria in metabasic rocks. Journal of Metamorphic Geology, 34, 845–869.

    Article  Google Scholar 

  23. Grimes, C. B., Ushikubo, T., Kozdon, R., & Valley, J. W. (2013). Perspectives on the origin of plagiogranites from oxygen isotopes in zircon. Lithos, 179, 48–66.

    Article  Google Scholar 

  24. Holland, T. J. B., & Powell, R. (2003). Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contributions to Mineralogy and Petrology, 145, 492–501.

    Article  Google Scholar 

  25. Holland, T. J. B., & Powell, R. (2011). An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29, 333–383.

    Article  Google Scholar 

  26. Hughes, R., & Pilatasig, L. (2002). Cretaceous and Tertiary terrane accretion in the Cordillera Occidental of the Andes of Ecuador. Tectonophysics, 345(1–4), 29–48.

    Article  Google Scholar 

  27. Irwin, W. P. (1972). Terranes of the western Paleozoic and Triassic Belt in the southern Klamath Mountains, California, US. Geological Survey Professional Paper, 800-C, pp. 103–111.

  28. Ishikawa, Y., Sawaguchi, T., Iwaya, S., & Horiuchi, M. (1976). Delineation of prospecting targets for Kuroko deposits based on modes of volcanisms of underlying dacite and alteration haloes (in Japanese). Mining Geology, 26, 105–117.

    Google Scholar 

  29. Jaillard, E., Lapierre, H., Ordoñez, M., Toro-Álava, J., Amortegui, A., & Van Melle, J. S. (2009). Accreted oceanic terranes in Ecuador: Southern edge of the Caribbean Plate? Geological Society, London, Special Publications, 328, 469–485.

    Article  Google Scholar 

  30. Jaillard, E., Ordoñez, M., Benítez, S., Berrones, G., Jiménez, N., Montenegro, G., & Zambrano, I. (1995). Basin development in an accretionary, oceanic-floored forearc setting: southern coastal Ecuador during late Cretaceous to late Eocene times. In A. J. Tankard, R. Suárez, & H. J. Welsink (Eds.), Petroleum Basins of South America, vol. 62 (pp. 615–631). Tulsa: AAPG Memoir.

    Google Scholar 

  31. Jaillard, E., Soler, P., Carlier, G., & Mourier, T. (1990). Geodynamic evolution of the northern and central Andes during early to middle Mesozoic times: A Tethyan model. Journal of the Geological Society, 147, 1009–1022.

    Article  Google Scholar 

  32. James, D. E. (1971). Plate tectonic model for the evolution of the Central Andes. Geological Society of America Bulletin, 82(12), 3325–3346.

    Article  Google Scholar 

  33. Jolly, W. T., & Lidiak, E. G. (2006). Role of crustal melting in petrogenesis of the Cretaceous Water Island Formation (Virgin Islands, northeast Antilles Island Arc). Geologica Acta, 4, 7–33.

    Google Scholar 

  34. Juteau, T., Megard, F., Raharison, L., & Whitechurch, H. (1977). Les assemblages ophiolitiques de l’occidentéquatorien; Nature pétrographique et position structural. Bulletin de la Societe Geologique de France, 19(5), 1127–1132.

    Article  Google Scholar 

  35. Kennerley, J. B. (1980). Outline of the geology of Ecuador. British Geological Survey Overseas Geologic and Mineral Resources, 55, London

  36. Kerr, A., Aspden, J. A., Tarney, J., & Pilatasig, L. F. (2002). The nature and provenance of accreted oceanic terranes in western Ecuador: Geochemical and tectonic constraints. Journal of the Geological Society, 159(5), 577–594.

    Article  Google Scholar 

  37. Kerr, A. C., & Tarney, J. (2005). Tectonic evolution of the Caribbean and northwestern South America: The case for accretion of two Late Cretaceous oceanic plateaus. Geology, 33(4), 269–272.

    Article  Google Scholar 

  38. Koepke, J., Feig, S. T., Snow, J., & Freise, M. (2004). Petrogenesis of oceanic plagiogranites by partial melting of gabbros: An experimental study. Contributions to Mineralogy and Petrology, 146(4), 414–432.

    Article  Google Scholar 

  39. Lapierre, H., Bosch, D., Dupuis, V., Polve, M., Maury, R., Hernandez, J., et al. (2000). Multiple plume events in the genesis of the peri-Caribbean Cretaceous oceanic plateau province. Journal of Geophysical Research, 105, 8403–8421.

    Article  Google Scholar 

  40. Large, R. R., Gemmell, J. B., Paulick, H., & Huston, D. L. (2001). The alteration box plot: A simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic-hosted massive sulfide deposits. Economic Geology, 96(5), 957–971.

    Google Scholar 

  41. Lebrat, M., Megard, F., Dupuy, C., & Dostal, J. (1987). Geochemistry and tectonic setting of pre-collision Cretaceous and Paleogene volcanic rocks of Ecuador. Geological Society of America Bulletin, 99, 569–578.

    Article  Google Scholar 

  42. Lebrat, M., Megard, F., Juteau, T., & Calle, J. (1985). Pre-orogenic assemblages and structure in theWestern Cordillera of Ecuador between 1° 40′ S and 2° 20′ S. Geologische Rundschau, 74, 343–351.

    Article  Google Scholar 

  43. Luff, I. W. (1982). Petrogenesis of the island arc tholeiite series of the South Sandwich Islands. Ph.D. Thesis: University Leeds, UK.

  44. Luzieux, L. (2007). Origin and Late Cretaceous–Tertiary Evolution of the Ecuadorian Forearc. Ph.D. Thesis: Institute of Geology, ETH Zürich, Switzerland.

  45. Luzieux, L., Heller, F., Spikings, R., Vallejo, C., & Winkler, W. (2006). Origin and Cretaceous history of the coastal Ecuadorian forearc between 1° N and 3° S: paleomagnetic, radiometric and fossil evidence. Earth and Planetary Science Letters, 249, 400–414.

    Article  Google Scholar 

  46. Macías-Mosquera, K. S. (2018). Geoquímica de los Plutones de Pascuales y de Bajo Grande (Cantón Jipijapa): Dataciones U-Pb en Zircones e implicaciones geodinámicas. Final Degree Project, Facultad de Ciencias Naturales, Guayaquil University.

  47. Mamberti, M., Lapierre, H., Bosch, D., Jaillard, E., Ethien, R., Hernandez, J., & Polvé, M. (2003). Accreted fragments of the late Cretaceous Caribbean-Colombian Plateau in Ecuador. Lithos, 66(3), 173–199.

    Article  Google Scholar 

  48. Mamberti, M., Lapierre, H., Bosch, D., Jaillard, E., Hernandez, J., & Polvé, M. (2004). The Early Cretaceous San Juan Plutonic Suite, Ecuador: A magma chamber in an oceanic plateau? Canadian Journal of Earth Sciences, 41(10), 1237–1258.

    Article  Google Scholar 

  49. Marcaillou, B., & Collot, J. Y. (2008). Chronostratigraphy and tectonic deformation of the North Ecuadorian-South Colombian offshore Manglares forearc basin. Marine Geology, 255(1–2), 30–44.

    Article  Google Scholar 

  50. Megard, F., & Lebrat, M. (1986). Geoquímica de las formaciones volcánicas pre-orogénicas de edad cretácea y/o terciaria del Ecuador. Revista del Banco Central del Ecuador, 8(24a), 173–189.

    Google Scholar 

  51. Meschede, M. (1986). A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56(3–4), 207–218.

    Article  Google Scholar 

  52. Mora, E. (2014). Análisis Textural y Petrográfico del Intrusivo Granítico de la Joya, Sector La Aurora—Parroquia Pascuales, Cantón Guayaquil. Final Degree Project, Facultad de Ciencias Naturales de la Guayaquil University.

  53. Mullen, E. D. (1983). MnO/TiO2/P2O5: A minor element discriminant for basaltic rocks of oceanic environments and its implication for petrogenesis. Earth and Planetary Science Letters, 62, 53–62.

    Article  Google Scholar 

  54. O’Connor, J. T. (1965). A classification for quartz-rich igneous rocks based on feldspars ratios. US Geological Survey Professional Paper, 525B, B79–B84.

    Google Scholar 

  55. Ordóñez, M. (2007). Asociaciones de radiolarios de la cordillera Chongón-Colonche, Ecuador (Coniaciano-Eoceno). In E. Díaz-Martínez & I. Rábano (Eds.), Cuadernos Museo Geominero, vol. 8, (pp. 291–299), Madrid: Instituto Geológico y Minero de España.

  56. Pearce, J. A. (1982). Trace element characteristics of lavas from destructive plate boundaries. Andesites, 8, 525–548.

    Google Scholar 

  57. Pearce, J. A., & Norry, M. J. (1979). Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to mineralogy and petrology, 69(1), 33–47.

    Article  Google Scholar 

  58. Pourtier, E. (2001). Pétrologie et géochimie des unités magmatiques de la côte équatorienne: implications géodynamiques. Unpublished DEA Thesis, University of Aix-Marseille.

  59. Powell, R., Holland, T. J. B., & Worley, B. (1998). Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. Journal of Metamorphic Geology, 16, 577–588.

    Article  Google Scholar 

  60. Reyes, P., & Michaud, F. (2012). Mapa Geológica de la margen costera ecuatoriana (1:500000). EP PetroEcuador—IRD (Eds.), Quito, Ecuador.

  61. Reynaud, C., Jaillard, É., Lapierre, H., Mamberti, M., & Mascle, G. H. (1999). Oceanic plateau and island arcs of southwestern Ecuador: Their place in the geodynamic evolution of northwestern South America. Tectonophysics, 307(3–4), 235–254.

    Article  Google Scholar 

  62. Rollingson, H. (1993). Using geochemical data: evaluation, presentation, interpretation. London: Logman Group.

    Google Scholar 

  63. Rollingson, H. (2009). New models for the genesis of plagiogranites in the Oman Ophiolite. Lithos, 112, 603–614.

    Article  Google Scholar 

  64. Rollingson, H. (2014). Plagiogranites from the mantle section of the Oman ophiolite: Models for early crustal evolution. Geological Society of London Special Publications, 392, 247–261.

    Article  Google Scholar 

  65. Saunders, A. D., & Tarney, J. (1979). The geochemistry of basalts from a back-arc spreading centre in the East Scotia Sea. Geochimica Cosmochimica Acta, 43(4), 555–572.

    Article  Google Scholar 

  66. Shervais, J. W. (1982). Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters, 59(1), 101–118.

    Article  Google Scholar 

  67. Sinton, C. W., Duncan, R. A., Storey, M., Lewis, J., & Estrada, J. J. (1998). An oceanic flood basalt province within the Caribbean plate. Earth and Planetary Science Letters, 155, 221–235.

    Article  Google Scholar 

  68. Spikings, R. A., Winkler, W., Seward, D., & Handler, R. (2001). Along-strike variations in the thermal and tectonic response of the continental Ecuadorian Andes to the collision with heterogeneous oceanic crust. Earth and Planetary Science Letters, 186(1), 57–73.

    Article  Google Scholar 

  69. Stern, R. J., & Scholl, D. W. (2010). Yin and yang of continental crustcreation and destruction by plate tectonic processes. International Geology Review, 52(1), 1–31.

    Article  Google Scholar 

  70. Sun, S. S., & Mac Donough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes. In A. D. Saunders & M. J. Norry (Eds.), Magmatism in Ocean Basins, vol. 42 (pp. 313–345). London: Geological Society Special Publications.

    Google Scholar 

  71. Tetreault, J. L., & Buiter, J. H. (2014). Future accreted terranes: A compilation of island arcs, oceanic plateaus, submarine ridges, seamounts, and continental fragments. Solid Earth, 5(2), 1243–1275.

    Article  Google Scholar 

  72. Vallejo, C. (2007). Evolution of the Western Cordillera in the Andes of Ecuador (Late Cretaceous–Paleogene). Ph.D. Thesis: Institute of Geology, ETH Zürich, Switzerland.

  73. Vallejo, C., Spikings, R. A., Horton, B. K., Luzieux, L., Romero, C., Winkler, W., & Thomsen, T. V. (2019). Late Cretaceous to Miocene stratigraphy and provenance of the coastal forearc and Western Cordillera of Ecuador: Evidence for accretion of a single oceanic plateau fragment. In B. K. Horton & A. A. Folguera (Eds.), Andean tectonics (pp. 209–236). Amsterdam: Elsevier.

    Google Scholar 

  74. Vallejo, C., Spikings, R. A., Winkler, W., Luzieux, L., Chew, D., & Page, L. (2006). The early interaction between the Caribbean Plateau and the NW South American plate. Terra Nova, 18, 264–269.

    Article  Google Scholar 

  75. Vallejo, C., Winkler, W., Spikings, R. A., Luzieux, L., Heller, F., & Bussy, F. (2009). Mode and timing of terrane accretion in the forearc of the Andes in Ecuador. Memoir of the Geological Society of America, 204, 197–216.

    Google Scholar 

  76. Van Melle, J., Vilema, W., Faure-Brac, B., Ordoñez, M., Lapierre, H., Jimenez, N., et al. (2008). Pre-collision evolution of the Pinon oceanic terrane of SW Ecuador: Stratigraphy and geochemistry of the “Calentura Formation.” Bulletin de la Société Géologique de France, 179(5), 433–443.

    Article  Google Scholar 

  77. Van Thournout, F., Hertogen, J., & Quevedo, L. (1992). Allochtonous terranes in nortwestern Ecuador. Tectonophysics, 205, 205–221.

    Article  Google Scholar 

  78. Wallrabe-Adams, H. J. (1990). Petrology and geotectonic development of the Western Ecuadorian Andes: The Basic Igneous Complex. Tectonophysics, 185, 163–182.

    Article  Google Scholar 

  79. Whattam, S. A., & Stern, R. J. (2015). Late Cretaceous plume-induced subduction initiation along the southern margin of the Caribbean and NW South America: The first documented example with implications for the onset of plate tectonics. Gondwana Research, 27(1), 38–63.

    Article  Google Scholar 

  80. White, R. W., Powell, R., Holland, T. J. B., Johnson, T. E., & Green, E. C. R. (2014). New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology, 32, 261–286.

    Article  Google Scholar 

  81. White, R. W., Powell, R., Holland, T. J. B., & Worley, B. A. (2000). The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. Journal of Metamorphic Geology, 18, 497–511.

    Article  Google Scholar 

  82. Wilson, M. (1989). Igneous petrogenesis. A global tectonic approach (p. 466). London: Chapman & Hall.

    Google Scholar 

  83. Winchester, J. A., & Floyd, P. A. (1977). Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20(4), 325–343.

    Article  Google Scholar 

  84. Zapata-Villada, J. P., Restrepo, J. J., Cardona-Molina, A., & Martens, U. (2017). Geoquímica y geocronología de las rocas volcánicasbásicas y el gabro de altamira, cordillera occidental (Colombia): registro de ambientes de plateau y arco oceánico superpuestos durante el Cretácico. Boletín de Geología, 39(2), 13–30.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank two reviewers (J. Escuder and anonymous reviewer) for their constructive comments and the editorial office (R. Arenas) for the editorial handling. We also thank A. Moreira for his help in the rock sample collection. The JEOL 6010 PLUS/LA has been partially funded by European Regional Development Fund,  (ref. IGME13-4E-1518).

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Berrezueta.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 69 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Berrezueta, E., López, K., González-Menéndez, L. et al. Ophiolitic rocks and plagiorhyolites from SW Ecuador (Cerro San José): petrology, geochemistry and tectonic setting. J Iber Geol (2021). https://doi.org/10.1007/s41513-020-00154-9

Download citation

Keywords

  • Basalt
  • Ophiolite
  • Plagiorhyolite
  • Volcanic arc
  • Ecuador

Palabras clave

  • Basaltos
  • Ofiolitas
  • Plagioriolita
  • Arco volcánico
  • Ecuador