Skip to main content

Advertisement

Log in

The Cenomanian–Turonian transition in the carbonate platform facies of the Western Saharan Atlas (Rhoundjaïa Formation, Algeria)

  • Research Paper
  • Published:
Journal of Iberian Geology Aims and scope Submit manuscript

Abstract

Microfacies, fossil macroinvertebrates and microfossil assemblages (foraminifera and ostracods) and δ13C from the Rhoundjaïa Formation (Ksour Mountains, Western Saharan Atlas, Algeria) were studied. During the Late Cenomanian–Early Turonian, the Ksour Basin was an isolated platform at mid to outer shelf depths. The neritic conditions were interrupted by pelagic conditions in transgressive intervals. This deepening of the palaeoenvironment is reflected by changes in the foraminiferal assemblages. The composition of benthic and planktic foraminiferal assemblages, characterized by low diversity and abundance of low oxygen tolerant species, reflects a carbonate platform with biotic stress conditions (oxygen and nutrient fluctuations and sea-level changes). Planktic foraminiferal assemblages are dominated by opportunists such as Muricohedbergella and Planoheterohelix, which colonized new ecospace on the shelf during the transgression. The Oceanic Anoxic Event 2 (OAE2) is not represented by organic rich facies but does coincide with the successive proliferation of different opportunist organisms such as microgastropods and small echinoid (hemiasterids) and the heterohelicid shift. The continuous presence of trace fossils (Thalassinoides and Planolites-like) and benthic macroinvertebrates allows us to exclude anoxic conditions during the Whiteinella archaeocretacea Zone. The proliferation of Planoheterohelix indicates the record of eutrophic conditions and the transition from oxygenated to poorly oxygenated waters during stratified open marine settings at the time of maximum flooding. The subsequent increase in thin-shelled bivalves and cytherellid ostracods would confirm the stress conditions at the time of the δ13C isotopic excursion in the upper part of the W. archaeocretacea Zone. The Lower Turonian is represented by a shallowing upward trend in the Ksour Basin. Comparison of the taxonomic composition of the planktic foraminiferal assemblages (phenogram and class diagram) indicates the high degree of relationship of the Ksour Basin with the Northeast Sicily Basin, Central Tunisia Basin and Egypt. This work sheds light on the impact of the OAE2-related environmental perturbation in environments where anoxic conditions were not reached, as well as the response of the fossil assemblages to the biotic crisis.

Resumen

Se han estudiado las microfacies, las asociaciones de macroinvertebrados fósiles y microfósiles (foraminíferos y ostrácodos) y el 13C en la Formación Rhoundjaïa (Montes Ksour, Atlas Sahariano Occidental, Argelia). Durante el Cenomaniense superior-Turoniense temprano, la Cuenca de Ksour fue una plataforma relativamente aislada con unas características entre plataforma media y externa. Las condiciones neríticas cambiaron a condiciones pelágicas durante los intervalos transgresivos. La profundización de los paleoambientes queda registrada por cambios en las asociaciones de foraminíferos. La composición de las asociaciones de foraminíferos bentónicos y planctónicos caracterizada por baja diversidad y por la abundancia de species tolerantes de baja oxigenación, refleja una plataforma cabonatada con condiciones de estrés biológico (variaciones en el grado de oxigenación, contenido en nutrientes y nivel del mar). Las asociaciones de foraminíferos planctónicos están dominadas por oportunistas tales como Muricohedbergella y Planoheterohelix, que colonizaron el incremento de ecoespacio creado en la plataforma durante la transgresión. El evento anóxico oceánico 2 (Oceanic Anoxic Event 2, OAE2) no está representado por facies ricas en materia orgánica sino que coincide con la sucesivas etapas de proliferación de diferentes grupos de oportunistas como microgasterópodos y pequeños equinoideos (hemiastéridos) y la proliferación de heterohelícidos. El registro continuado de trazas fósiles (Thalassinoides y posibles Planolites) y de macroinvertebrados bentónicos permite excluir la existencia de condiciones plenamente anóxicas durante la Zona de Whiteinella archaeocretacea Zone. La proliferación de Planoheterohelix indica el registro de condiciones eutróficas y y el empobrecimiento en oxígeno de las aguas, posiblemente relacionado con una estratificación en la columna de agua durante la fase de máxima inundación. El posterior incremento en pequeños bivalvos de concha fina (filamentos) y ostrácodos citherellidos confirmaría las condiciones de estrés ambiental al tiempo que se producíala excrusión isotópica del 13C en la parte superior de la Zona de Whiteinella archaeocretacea. El Turoniense inferior está representado por una secuencia de somerización en la Cuenca de Ksour. La comparación de la composición taxonómica de las asociaciones de foraminíferos planctónicos (fenogramas y diagramas de clases) indica un alto grado de relación entre las asociaciones de la Cuenca de Ksour con el Noreste de la Cuenca de Sicilia, la Cuenca Central de Túnez y Egipto. Este trabajo muestra un ejemplo del impacto de las perturbaciones que acompañaron al OAE en ambientes donde no se desarrollaron condiciones anóxicas así como la respuesta de las asociaciones fósiles a esta crisis biológica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Accarie, H., Emmanuel, L., Robaszynski, F., Baudin, F., Amédro, F., & Caron, M. (1996). La géochimie isotopique du carbone comme outil stratigraphique. Application a` la limite Cénomanien–Turonien en Tunisie Centrale. Comptes Rendus de l’Académie des Sciences, Paris, 322, 579–586.

    Google Scholar 

  • Accarie, H., Robaszynski, F., Amédro, F., Caron, M., & Zagrarni, M. F. (2000). Stratigraphie événementielle au passage Cénomanien–Turonien dans le secteur occidental de la plate-forme de Tunisie centrale (Formation Bahloul, région de Kalaat Senan). Annales des Mines et de la Géologie. Tunis, 40, 63–80.

    Google Scholar 

  • Aguado, R., Reolid, M., & Molina, E. (2016). Response of calcareous nannoplankton to the Late Cretaceous oceanic anoxic event 2 at Oued Bahloul (Central Tunisia). Palaeogeography, Palaeoclimatology, Palaeoecology, 459, 289–305.

    Google Scholar 

  • Aguilera-Franco, N., & Allison, P. (2004). Events of the Cenomanian–Turonian Succession, Southern Mexico. Journal of Iberian Geology, 31, 25–50.

    Google Scholar 

  • Aït Ouali, R., & Delfaud, J. (1995). Les modalités d’ouverture du bassin des Ksour au Lias dans le cadre du « rifting » jurassique au Maghreb. Comptes Rendus de l’Académie des Sciences, Paris, 320, 773–778.

    Google Scholar 

  • Aly, M. F., & Abdel-Gawad, G. I. (2001). Upper Cenomanian–Lower Turonian ammonites from north and central Sinai, Egypt. El-Minia Science Bulletin, 13, 17–60.

    Google Scholar 

  • Amédro, A., Accarie, H., & Robaszynski, F. (2005). Position de la limite Cénomanien–Turonien dans la Formation Bahloul de Tunisie centrale: Apports intégrés des ammonites et des isotopes du carbone (δ13C). Eclogae Geologicae Helvetiae, 98, 151–167.

    Google Scholar 

  • Ando, A., Huber, B. T., & MacLeod, K. G. (2010). Depth-habitat reorganization of planktonic foraminifera across the Albian/Cenomanian boundary. Paleobiology, 36, 357–373.

    Google Scholar 

  • Andreu, B. (2002). Cretaceous ostracode biochronology of Morocco. Eclogae Geologicae Helvetiae, 95, 133–152.

    Google Scholar 

  • Andreu, B., Lebedel, V., Wallez, M. J., Lézin, C., & Ettachfini, M. (2013). The upper Cenomanian lower Turonian carbonate platform of the Preafrican Trough, Morocco: Biostratigraphic, paleoecological and paleobiogeographical distribution of ostracods. Cretaceous Research, 45, 1–31.

    Google Scholar 

  • Aquit, M., Kuhnt, W., Holbourn, A., Chellai, E. H., Stattegger, K., Kluth, O., et al. (2013). Late Cretaceous palleoenvironmental evolution of the Tarfaya Atlantic coastal Basin, SW Morocco. Cretaceous Research, 45, 288–305.

    Google Scholar 

  • Arthur, M. A., & Schlanger, S. O. (1979). Cretaceous oceanic anoxic events as causal factors in development of reef-reservoired giant oil fields. American Association of Petroleum Geologists Bulletin, 63, 870–885.

    Google Scholar 

  • Arthur, M. A., Schlanger, S. O., & Jenkyns, H. C. (1987). The Cenomanian–Turonian oceanic anoxic event, II. Palaeoceanographic controls on organic-matter production and preservation. Journal of the Geological Society Special Publications, 26, 401–420.

    Google Scholar 

  • Ayoub-Hannaa, W., Huntley, J. W., & Fürsich, F. T. (2013). Significance of detrended correspondence analysis (DCA) in palaeoecology and biostratigraphy: A case study from the Upper Cretaceous of Egypt. Journal of African Earth Sciences, 80, 48–59.

    Google Scholar 

  • Barnard, T., Cordey, W. G., & Shipp, D. J. (1981). Foraminifera from the Oxford Clay (Callovian–Oxfordian of England). Revista Española Micropaleontología, 13, 383–462.

    Google Scholar 

  • Barroso-Barcenilla, F., Pascual, A., Peyrot, D., & Rodríguez-Lázaro, J. (2011). Integrated biostratigraphy and chemostratigraphy of the upper Cenomanian and lower Turonian succession in Puentedey, Iberian Trough, Spain. Proceedings of the Geologists Association, 122, 67–81.

    Google Scholar 

  • Bassoullet, J. P., & Damotte, R. (1969). Quelques ostracodes nouveaux du Cénomanien–Turonien de l’Atlas saharien occidental (Algérie). Revue de Micropaléontologie, 3, 130–144.

    Google Scholar 

  • Bauer, J., Kuss, J., & Steuber, T. (2002). Platform environments, microfacies and systems tracts of the Upper Cenomanian–Lower Santonian of Sinai. Egypt. Facies, 47, 1–25.

    Google Scholar 

  • Benyoucef, M., Mebarki, K., Ferré, B., Adaci, M., Bulot, L. G., Desmares, D., et al. (2017). Litho- and biostratigraphy, facies patterns and depositional sequences of the Cenomanian–Turonian deposits in the Ksour Mountains (Saharan Altas, Algeria). Cretaceous Research, 78, 34–55.

    Google Scholar 

  • Bismuth, H., Donze, P., Lefevre, J., & Saint-Marc, P. (1981). Nouvelles espèces d’ostracodes dans le Crétacé Moyen et Supérieur du Djebel Semmama (Tunisie du Centre-Nord). Cahiers de Micropaléontologie, 3, 51–69.

    Google Scholar 

  • Bornemann, A., Norris, R. D., Friedrich, O., Beckmann, B., Schouten, R., Sinninghe-Damste, J., et al. (2008). Isotopic evidence for glaciation during the Cretaceous super-greenhouse. Science, 319, 951–954.

    Google Scholar 

  • Busson, G., & Cornée, A. (1996). L’événement océanique anoxique du Cénomanien supérieur-terminal: une revue et une interptrétation mettant en jeu une stratification des eaux marines par le CO2 mantellique. Sociéte Géologique du Nord, 23, 143.

    Google Scholar 

  • Busson, G., Dhondt, A., Amédro, F., Néraudeau, D., & Cornée, A. (1999). La grande transgression du Cénomanien supérieur–Turonien inférieur sur la Hamada de Tinrhert (Sahara algérien): Datations biostratigraphiques, environnements de dépôt et comparaison d’un témoin épicratonique avec les séries contemporaines à matière organique du Maghreb. Cretaceous Research, 20, 29–46.

    Google Scholar 

  • Caron, M., Dall’ Agnolo, S., Accarie, H., Barrera, E., Kauffman, E. G., Amédro, F., et al. (2006). High-resolution stratigraphy of the Cenomanian–Turonian boundary interval at Pueblo (USA) and wadi Bahloul (Tunisia): Stable isotope and bio-events correlation. Geobios, 39, 171–200.

    Google Scholar 

  • Caron, M., Robaszynski, F., Amédro, F., Baudin, F., Deconinck, J. F., Hochuli, P., et al. (1999). Estimation de la durée de l’événement anoxique global au passage Cénomanien/Turonien. Approche cyclostratigraphique dans la formation Bahloul en Tunisie centrale. Bulletin Société Géologique France, 170, 145–160.

    Google Scholar 

  • Chikhi-Aouimeur, F., Grosheny, D., Ferry, S., Harket, M., Jati, M., Atrops, F., et al. (2010). Lithofaciès, paléogéographie et corrélations au passage Cénomanien–Turonien dans l’Atlas Saharien (Ouled Naïl, Zibans, Aurès et Hodna, Algérie). Mémoire du Service Géologique National d’Algérie, 17, 67–83.

    Google Scholar 

  • Coccioni, R., & Luciani, V. (2004). Planktonic foraminifera and environmental changes across the Bonarelli Event (OAE2, latest Cenomanian) in its type area: A high-resolution study from the Tethyan reference Bottaccione section (Gubbio, Central Italy). Journal of Foraminiferal Research, 34, 109–129.

    Google Scholar 

  • Corfield, R. M., Hall, M., & Brasier, M. D. (1990). Stable isotope evidence for foraminifeal habitats during the development of the Cenomanian/Turonian oceanic anoxic event. Geology, 18, 175–178.

    Google Scholar 

  • Courville, P. (2007). Échanges et colonisations fauniques (Ammonitina) entre Téthys et Atlantique sud au Crétacé supérieur: Voies atlantiques ou sahariennes? Carnets de Géologie, 2, 1–19.

    Google Scholar 

  • Courville, P., Meister, C., Lang, J., Mathey, B., & Thierry, J. (1991). Les corrélations en Téthys occidentale et l’hypothèse de la liaison Téthys-Atlantique sud: Intérêts des faunes d’ammonites du Cénomanian supérieur–Turonien moyen basal du Niger et du nigeria (Afrique de l’ Ouest). Comptes-Rendus de l’Académie des Sciences de Paris, 313, 1039–1042.

    Google Scholar 

  • Courville, P., Thierry, J., & Lang, J. (1998). Ammonites faunal exchanges between South Tethysian platforms and South Atlantic during the uppermost Cenomanian–Lowermost middle Turonian in the Benue Trough (Nigeria). Geobios, 32, 187–214.

    Google Scholar 

  • Coxall, H. K., Wilson, P. A., Pearson, P. N., & Sexton, P. F. (2007). Iterative evolution of digitate planktonic foraminifera. Paleobiology, 33, 495–516.

    Google Scholar 

  • Delfaud, J. (1986). Organisation scalaire des événements sédimentaires majeurs autour de la Mésogée durant le Jurassique et le Crétacé. Conséquences pour les associations biologiques. Bulletin des Centres de Recherches Exploration –Production, Elf-Aquitaine, 10, 205–206.

    Google Scholar 

  • Denne, R. A., Hinote, R. E., Breyer, J. A., Kosanke, T. H., Lees, J. A., Engelhardt-Moore, N., et al. (2014). The Cenomanian–Turonian Eagle Ford Group of South Texas: Insights on timing and paleoceanographic conditions from geochemistry and micropaleontologic analyses. Palaeogeography, Palaeoclimatology, Palaeoecology, 413, 2–28.

    Google Scholar 

  • Desmares, D., Grosheny, D., Beaudoin, B., Gardin, S., & Gauthier-Lafaye, F. (2007). High resolution stratigraphic record constrained by volcanic ash beds at the Cenomanian–Turonian boundary in the Western Interior Basin, USA. Cretaceous Research, 28, 561–582.

    Google Scholar 

  • Elderbak, K., Leckie, R. M., & Tibert, N. E. (2014). Paleoenvironmental and paleoceanographic changes across the Cenomanian–Turonian boundary event (oceanic anoxic event 2) as indicated by foraminiferal assemblages from the eastern margin of the Cretaceous Western Interior Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 413, 29–48.

    Google Scholar 

  • El-Sabbagh, A., Tantawy, A. A., Keller, G., Khozyem, H., Spangenberg, J., Adatte, T., et al. (2011). Stratigraphy of the Cenomanian–Turonian oceanic anoxic event OAE2 in shallow shelf sequences of NE Egypt. Cretaceous Research, 32, 705–722.

    Google Scholar 

  • Erbacher, J., & Thurow, J. (1997). Influence of oceanic anoxic events on the evolution of mid Cretaceous radiolaria in the North Atlantic and western Tethys. Marine Micropaleontology, 30, 139–158.

    Google Scholar 

  • Escarguel, G. (2001). BG. Index version 1.1β. Programme et notice d’utilisation.

  • Ettachfini, M., & Andreu, B. (2005). Le Cénomanien et le Turonien de la Plate-forme Préafricaine du Maroc. Cretaceous Research, 25, 277–302.

    Google Scholar 

  • Ettachfini, M., Souhel, A., Andreu, B., & Caron, M. (2005). La limite Cénomanien–Turonien dans le Haut Atlas central, Maroc. Geobios, 38, 57–68.

    Google Scholar 

  • Ferré, B., Mebarki, K., Benyoucef, M., Villier, L., Bulot, L. G., Desmares, D., et al. (2017). Roveacrinids (Crinoidea, Roveacrinida) from the Cenomanian–Turonian of southwest Algeria (Saharan Atlas and Guir Basin). Annales de Paléonologie, 103, 185–196.

    Google Scholar 

  • Friedrich, O., Erbacher, J., & Mutterlose, J. (2006). Paleoenvironmental changes across the Cenomanian/Turonian boundary event (oceanic anoxic event 2) as indicated by benthic foraminifera from the Demerara Rise (ODP Leg 207). Revue de Micropaléontologie, 49, 121–139.

    Google Scholar 

  • Gebhardt, H., Friedrich, O., Schenk, B., Fox, L., Hart, M., & Wagreich, M. (2010). Paleo-ceanographic changes at the northern Tethyan margin during the Cenomanian–Turonian oceanic anoxic event (OAE-2). Marine Micropaleontology, 77, 25–45.

    Google Scholar 

  • Gebhardt, H., Kuhnt, W., & Holbourn, A. (2004). Foraminiferal response to sea level change, organic flux and oxygen deficiency in the Cenomanian of the Tarfaya Basin, southern Morocco. Marine Micropaleontology, 53, 133–157.

    Google Scholar 

  • Gertsch, B., Keller, G., Adatte, T., Berner, Z., Kassab, A. S., Tantawy, A. A., et al. (2008). Cenomanian–Turonian transition in a shallow water sequence of the Sinai, Egypt. International Journal of Earth Sciences, 99, 165–182.

    Google Scholar 

  • Grosheny, D., Chikhi-Aouimeur, F., Ferry, S., Benkherouf-Kechid, F., Jati, M., Atrops, F., et al. (2008). The Upper Cenomanian–Turonian (Upper Cretaceous) of the Saharan Atlas (Algeria). Bulletin de la Société Géolologique de France, 179, 593–603.

    Google Scholar 

  • Grosheny, D., Ferry, S., Jati, M., Ouaja, M., Bensalah, M., Atrops, F., et al. (2013). The Cenomanian–Turonian boundary on the Saharan Platform (Tunisia and Algeria). Cretaceous Research, 42, 66–84.

    Google Scholar 

  • Hardas, P., & Mutterlose, J. (2007). Calcareous nannofossil assemblages of oceanic anoxic event 2 in the equatorial Atlantic: Evidence of a eutrophication event. Marine Micropaleontology, 66, 52–69.

    Google Scholar 

  • Hardas, P., Mutterlose, J., Friedrich, O., & Erbacher, J. (2012). The Middle Cenomanian Event in the equatorial Atlantic: The calcareous nannofossil and benthic foraminiferal response. Marine Micropaleontology, 96–97, 66–74.

    Google Scholar 

  • Harket, M., & Delfaud, J. (2000). Genèse des séquences sédimentaires du Crétacé supérieur des Aurès (Algérie). Rôle de l’eustatisme, de la tectonique, de la subsidence: une mise au point. Comptes Rendus Académie des Sciences, 330, 785–792.

    Google Scholar 

  • Harries, P. J. (1993). Dynamics of survival following the Cenomanian–Turonian (Upper Cretaceous) mass extinction event. Cretaceous Research, 14, 563–583.

    Google Scholar 

  • Harries, P. J., & Kauffman, E. G. (1990). Patterns of survival and recovery following the Cenomanian–Turonian (Late Cretaceous) mass extinction in the Western Interior Basin, United States. Lecture Notes in Earth History, 30, 277–298.

    Google Scholar 

  • Harries, P. J., & Little, C. T. (1999). The early Toarcian (Early Jurassic) and the Cenomanian–Turonian (Late Cretaceous) mass extinctions: Similarities and contrasts. Palaeogeography, Palaeoclimatology, Palaeoecology, 154, 39–66.

    Google Scholar 

  • Hart, M. B. (1999). The evolution and diversity of Cretaceous planktonic foraminiferida. Geobios, 32, 247–255.

    Google Scholar 

  • Hasegawa, T. (1997). Cenomanian–Turonian carbon isotope events recorded in terrestrial organic matter from northern Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 130, 251–273.

    Google Scholar 

  • Hay, W. W. (2009). Cretaceous oceanic red beds: Stratigraphy, composition, origins and paleoceanographic and paleoclimatic significance. SEPM Special Publication, 91, 243–271.

    Google Scholar 

  • Haynes, S. J., Huber, B. T., & MacLeod, K. G. (2015). Evolution and phylogeny of mid-Cretaceous (Albian–Coniacian) Biserial planktic foraminifera. Journal of Foraminiferal Research, 45, 42–81.

    Google Scholar 

  • Hernández-Romano, U., Aguilera-Franco, N., Martínez-Medrano, M., & Barceló-Duarte, J. (1997). Guerrero-Morelos Platform drowning at the Cenomanian–Turonian boundary, Huitziltepec area, Guerrero State, southern Mexico. Cretaceous Research, 18, 661–686.

    Google Scholar 

  • Hetzel, A., März, C., Vogt, C., & Brümsack, H. J. (2011). Geochemical environment of Cenomanian–Turonian black shale deposition at Wunstorf (northern Germany). Cretaceous Research, 32, 480–494.

    Google Scholar 

  • Hilbrecht, H., Frieg, C., Troger, K. A., Voigt, S., & Voigt, T. (1996). Shallow water facies during the Cenomanian–Turonian anoxic event: Bio-events, isotopes, and sea level in southern Germany. Cretaceous Research, 17, 229–253.

    Google Scholar 

  • Hilbrecht, H., & Hoefs, J. (1986). Geochemical and palaeontological studies of the δ13C anomaly in boreal and north tethyan Cenomanian–Turonian sediments in Germany and adjacent areas. Palaeogeography, Palaeoclimatology, Palaeoecology, 53, 169–189.

    Google Scholar 

  • Huber, B. T., Norris, R. D., & McLeod, K. G. (2002). Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology, 30, 123–126.

    Google Scholar 

  • Ismail, A. A. (2001). Correlation of Cenomanian–Turonian ostracods of Jebel Shabraweet with their counterpart in Egypt, Nort Africa and the Middle East. Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 9, 513–533.

    Google Scholar 

  • Ismail, A. A., Hussein-Kamel, Y. F., Boukhary, M., & Ghandour, A. A. (2009). Late Cenomanian–Early Turonian foraminifera from Eastern Desert, Egypt. Micropaleontology, 55, 396–412.

    Google Scholar 

  • Jarvis, I., Carson, G. A., Cooper, M. K. E., Hart, M. B., Leary, P. N., Tocher, B. A., et al. (1988). Microfossil assemblages and the Cenomanian–Turonian (late Cretaceous) oceanic anoxic event. Cretaceous Research, 9, 3–103.

    Google Scholar 

  • Jarvis, I., Lignum, J. S., Gröcke, D. R., Jenkyns, H. C., & Pearce, M. A. (2011). Black shale deposition, atmospheric CO2 drawdown, and cooling during the Cenomanian–Turonian oceanic anoxic event. Paleoceanography, 26(PA3201), 1–17.

    Google Scholar 

  • Jati, M., Grosheny, D., Ferry, S., Masrour, M., Aoutem, M., Içame, N., et al. (2010). The Cenomanian–Turonian boundary event onthe Moroccan Atlantic margin (Agadir basin): Stable isotope and sequence stratigraphy. Palaeogeography, Palaeoclimatology, Palaeoecology, 296, 151–164.

    Google Scholar 

  • Jefferies, R., & Milton, P. (1965). The mode of life of two Jurassic species of “Posidonia” (Bivalvia). Palaeontology, 8, 156–185.

    Google Scholar 

  • Jenkyns, H. C. (1980). Cretaceous anoxic events: From continents to oceans. Journal of the Geological Society, London, 137, 171–188.

    Google Scholar 

  • Jones, C. E., & Jenkyns, H. C. (2001). Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. American Journal of Science, 301, 112–149.

    Google Scholar 

  • Karakitsios, V., Tsikos, H., Van Breugel, Y., Koletti, L., Damste, J. S. S., & Jenkyns, H. C. (2007). First evidence for the Cenomanian–Turonian oceanic anoxic event (OAE2, ‘Bonarelli’ event) from the Ionian Zone, western continental Greece. International Journal Earth Sciences, 96, 343–352.

    Google Scholar 

  • Keller, G., Berner, Z., Adatte, T., & Stueben, D. (2004). Cenomanian–Turonian and δ13C, and δ18O, sea level and salinity variations at Pueblo, Colorado. Palaeogeography, Palaeoclimatology, Palaeoecology, 211, 19–43.

    Google Scholar 

  • Keller, G., Han, Q., Adatte, T., & Burns, S. (2001). Palaeoenvironment of the Cenomanian–Turonian transition at Eastbourne, England. Cretaceous Research, 22, 391–422.

    Google Scholar 

  • Keller, G., & Pardo, A. (2004a). Age and paleoenvironment of the Cenomanian/Turonian global stratotype section and point at Pueblo, Colorado. Marine Micropaleontology, 51, 95–128.

    Google Scholar 

  • Keller, G., & Pardo, A. (2004b). Disaster opportunists Guembelitrinidae: Index for environmental catastrophes. Marine Micropaleontology, 53, 83–116.

    Google Scholar 

  • Kennedy, W. J., Walaszczyk, I., & Cobban, W. A. (2005). The global boundary stratotype section and point for the base of the Turonian stage of the Cretaceous: Pueblo, Colorado, USA. Episodes, 28, 93–104.

    Google Scholar 

  • Kolonic, S., Wagner, T., Forster, A., Damste, J. S. S., Walsworth-Bell, B., Erba, E., et al. (2005). Black shale deposition on the northwest African Shelf during the Cenomanin/Turonian oceanic anoxic event: Climatic coumpling and global organic carbon burial. Paleoceanography, 20, PA1006. https://doi.org/10.1029/2003pa000950.

    Google Scholar 

  • Kunht, W., Luderer, F., Nederbragt, S., Thurow, J., & Wagner, T. (2005). Orbital-scale record of the late Cenomanian–Turonian oceanic anoxic event (OAE-2) in the Tarfaya Basin (Morocco). International Journal of Earth Sciences, 94, 147–159.

    Google Scholar 

  • Kuroda, J., Ogawa, N. O., Tanimizu, M., Coffin, M. T., Tokuyama, H., Kitazato, H., et al. (2007). Contemporaneous massive subaerial volcanism and late Cretaceous oceanic anoxic event 2. Earth Planetary Science Letters, 256, 211–223.

    Google Scholar 

  • Leckie, R. M. (1985). Foraminifera of the Cenomanian–Turonian boundary interval, Greenhorn Formation, Rock Canyon Anticline, Pueblo, Colorado. In L. M. Pratt, E. G. Kauffman, & F. B. Zelt (Eds.), Fine-grained deposits and biofacies of the Cretaceous Western Interior Seaway: Evidence of cyclic sedimentary processes, fieldtrip guidebook 4 (pp. 139–149). Tulsa: SEPM.

    Google Scholar 

  • Leckie, R. M., Bralower, T. J., & Cashman, R. (2002). Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography, 17, PA1041. https://doi.org/10.1029/2001pa000623.

    Google Scholar 

  • Leckie, R. M., Schmidt, M. G., Finkelstein, D., & Yuretich, R. (1991). Paleoceanographic and paleoclimatic interpretations of the Mancos Shale (Upper Cretaceous), Black Mesa Basin, Arizona. In J. D. Nations & J. G. Eaton (Eds.), Stratigraphy, depositional environments, and sedimentary tectonics of the western margin (pp. 139–152). Boulder: Cretaceous Western Interior Seaway, Geological Society of America Special Paper.

    Google Scholar 

  • Leckie, R. M., Yuretich, R. F., West, L. O. L., Finkelstein, D., & Schmidt, M. (1998). Paleoceanography of the southwestern Interior Sea during the time of the Cenomanian–Turonian boundary (late Cretaceous). SEPM Concepts in Sedimentology and Paleontology, 6, 101–126.

    Google Scholar 

  • Lézin, C., Andreu, B., Ettachfini, M., Walleez, M.-J., Lebedel, V., & Meister, C. (2012). The upper Cenomanian–Lower Turonian of the Preafrican Trough, Morocco. Sedimentary Geology, 245–246, 1–16.

    Google Scholar 

  • Lowery, C. M., Cunningham, R., Barrie, C. D., & Bralower, T. (2017). The Northern Gulf of Mexico during OAE2 and the relationship between water depth and black shale development. Paleoceanography, 32, 1316–1335.

    Google Scholar 

  • Lowery, C. M., Leckie, R. M., Bryant, R., Elderbak, K., Parker, A., Polyak, D. E., et al. (2018). The Late Cretaceous Western Interior Seaway as a model for oxygenation change in epicontinental restricted basins. Earth-Science Reviews, 177, 545–564.

    Google Scholar 

  • Luciani, V., & Cobianchi, M. (1999). The Bonarelli Level and other black shales in the Cenomanian–Turonian of the northeastern Dolomites (Italy): Calcareous nannofossil and foraminiferal data. Cretaceous Research, 20, 135–167.

    Google Scholar 

  • Lüning, S., Kolonic, S., Belhadj, E. M., Belhadj, Z., Cota, L., Baric, G., et al. (2004). Integrated depositional model for the Cenomanian–Turonian organic-rich strata in North Africa. Earth-Science Reviews, 64, 51–117.

    Google Scholar 

  • Lüning, S., Marzouk, A. M., Morsi, A. M., & Kuss, J. (1998). Sequence stratigraphy of the Upper Cretaceous of central-east Sinai, Egypt. Cretaceous Research, 19, 153–196.

    Google Scholar 

  • Maamouri, A. L., Zaghbib-Turki, D., Matmati, M. F., Chikhaoui, M., & Salaj, J. (1994). La formation Bahloul en Tunisie centro-sep-tentrionale: Variations latérales, nouvelle datation et nouvelle in-terprétation en terme de stratigraphie séquentielle. Journal of African Earth Sciences, 18, 37–50.

    Google Scholar 

  • Meister, C., & Abdallah, H. (2005). Précision sur les successions d’ ammonites du Cénomanien–Turonien dans la région de Gafsa, Tunisie du centre-sud. Revue de Paléobiologie, 24, 111–199.

    Google Scholar 

  • Meister, C., Alzouma, K., Lang, J., & Mathey, B. (1992). Les ammonites du Niger et la transgression transsaharienne au cours du Cénomanien–Turonien. Geobios, 25, 55–100.

    Google Scholar 

  • Meister, C., & Rhalmi, M. (2002). Quelques ammonites du Cénomanien–Turonien de la région d’Errachidia-Boudnid-Erfoud (partie méridionale du Haut Atlas Central, Maroc). Revue de Paléobiologie, 21, 759–779.

    Google Scholar 

  • Monteiro, F. M., Pancost, R. D., Ridwell, A., & Donnadieu, Y. (2012). Nutrients as the dominant control on the spread of anoxia and euxinia across the Cenomanian–Turonian oceanic anoxic event (OAE2): Model-data comparison. Paleoceanography, 27, PA4209.

    Google Scholar 

  • Moody, R. T. J., & Sutcliffe, P. J. C. (1991). The Cretaceous deposits of the Iullemmeden Basin of Niger, central West Africa. Cretaceous Research, 12, 137–157.

    Google Scholar 

  • Mort, H., Jacquant, O., Adatte, T., Steinmann, P., Föllmi, K., Matera, V., et al. (2007). The Cenomanian/Turonian anoxic event at the Bonarelli level in Italy and Spain: Enhanced productivity and/or better preservation? Cretaceous Research, 28, 597–612.

    Google Scholar 

  • Nagm, E. (2015). Stratigraphic significance of rapid faunal change across the Cenomanian–Turonian boundary in the Eastern Desert, Egypt. Cretaceous Research, 52, 9–24.

    Google Scholar 

  • Naili, H., Belhadj, Z., Robaszynski, F., & Caron, M. (1995). Présence de roches mère à faciès Bahloul vers la limite Cénomanien–Turonien dans la région de Tébessa (Algérie orientale). Notes du Service Géologique de Tunisie, 61, 19–32.

    Google Scholar 

  • Nederbragt, A. J., Erlich, R. N., Fouke, B. W., & Ganssen, G. M. (1998). Palaeoecology of the biserial planktonic foraminifer Heterohelix moremani (Cushman) in the late Albian to middle Turonian Circum-North Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology, 144, 115–133.

    Google Scholar 

  • Nederbragt, A. J., & Fiorentino, A. (1999). Stratigraphy and paleoceanography of the Cenomanian–Turonian Boundary Event in Oued Mellegue, north-western Tunisia. Cretaceous Research, 20, 47–62.

    Google Scholar 

  • Negra, M. H., Zagrarni, M. F., Hanini, A., & Strasser, A. (2011). The filament event near the Cenomanian–Turonian boundary in Tunisia: Filament origin and environmental signification. Bulletin Société Géologique France, 182, 507–519.

    Google Scholar 

  • Norris, R. D., & Wilson, P. A. (1998). Low-latitude sea-surface temperature for the mid Cretaceous and the evolution of planktic foraminifera. Geology, 26, 823–826.

    Google Scholar 

  • Okosun, E. A. (1992). Cretaceous ostracod biostratigraphy from Chad Bassin in Nigeria. Journal of African Earth Sciences, 3, 327–339.

    Google Scholar 

  • Paul, C. R. C., & Lamolda, M. A. (2009). Testing the precision of bioevents. Geological Magazine, 146, 625–637.

    Google Scholar 

  • Pavlishina, P., & Wagreich, M. (2012). Biostratigraphy and paleoenvironments in a northwestern TethyanCenomanian–Turonian boundary section (Austria) based on palynology and calcareous nannofossils. Cretaceous Research, 38, 103–112.

    Google Scholar 

  • Pearce, C. R., Jarvis, I., & Tocher, B. A. (2009). The Cenomanian–Turonian boundary event, OAE 2 and palaeoenvironmental change in epicontinental seas: New insights from the dinocyst and geochemical records. Palaeogeography, Palaeoclimatology, Palaeoecology, 280, 207–234.

    Google Scholar 

  • Peryt, D., & Wyrwicka, K. (1991). The Cenomanian–Turonian oceanic anoxic event in SE Poland. Cretaceous Research, 12, 65–80.

    Google Scholar 

  • Poulsen, C. J., Barron, E. J., Arthur, M. A., & Peterson, W. H. (2001). Response of mid-Cretaceoys global oceanic circulation to tectonic and CO2 forcings. Paleoceanography, 16, 1–17.

    Google Scholar 

  • Pratt, L. M., & Threlkeld, C. N. (1984). Stratigraphic significance of 13C/12C ratios in mid-Cretaceous rocks of the Western Interior, USA. In D. F. Slott & D. J. Glass (Eds.), Mesozoic of middle North America (Vol. 9, pp. 305–312). Calgary: Canadian Society of Petroleum Geologists Memoir.

    Google Scholar 

  • Prauss, M. L. (2012). The Cenomanian/Turonian boundary event (CTBE) at Tarfaya, Morocco, northwest Africa: Eccentricity controlled water column stratification as major factor for total organic carbon (TOC) accumulation: Evidence from marine palynology. Cretaceous Research, 37, 246–260.

    Google Scholar 

  • Price, G. D., & Hart, M. B. (2002). Isotopic evidence for early to mid-Cretaceous ocean temperature variability. Marine Micropaleontology, 46, 45–58.

    Google Scholar 

  • Price, G. D., Sellwood, B., Corfield, R. M., Clarke, L. J., & Cartlidge, J. E. (1998). Isotopic evidence for paleotemperatures and depth stratification of middle Cretaceous planktonic foraminfiers from the Pacific Ocean. Geological Magazine, 135, 183–191.

    Google Scholar 

  • Prokoph, A., Babalola, L. O., El Bilali, H., Olagoke, S., & Rachold, V. (2013). Cenomanian Turonian carbon isotope stratigraphy of the Western Canadian Sedimentary Basin. Cretaceous Research, 44, 39–53.

    Google Scholar 

  • Reolid, M., Sánchez-Quiñónez, C. A., Alegret, L., & Molina, E. (2015). Palaeoenvironmental turnover across the Cenomanian–Turonian transition in Oued Bahloul, Tunisia: Foraminifera and geochemical proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 417, 491–510.

    Google Scholar 

  • Reolid, M., Sánchez-Quiñónez, C. A., Alegret, L., & Molina, E. (2016). The biotic crisis across the oceanic anoxic event 2: Palaeoenvironmental inferences based on foraminifera and geochemical proxies from the South Iberian Palaeomargin. Cretaceous Research, 60, 1–27.

    Google Scholar 

  • Rhalmi, M., Pascal, A., & Chellai, E. H. (2000). Litho-biostratigraphie, diagenèse et paléogéographie au Cénomanien supérieur–Turonien inférieur des bassins sud-atlasiques marocains. Géologie Alpine, 76, 135–149.

    Google Scholar 

  • Robaszynski, F. (1989). L’événement à l’échelle gobale pendant la partie moyenne du Crétacé. Geobios, Mémoire Spécial, 11, 311–319.

    Google Scholar 

  • Robaszynski, F., Amédro, F., & Caron, M. (1993a). La limite Cénomanien–Turonien et la Formation Bahloul dans quelques localités de Tunisie Centrale. Cretaceous Research, 14, 477–486.

    Google Scholar 

  • Robaszynski, F., & Caron, M. (1995). Foraminifères planctoniques du Crétacé: Commentaire de la zonation Europe-Méditerranée. Bulletin Société Géolologique de France, 166, 681–692.

    Google Scholar 

  • Robaszynski, F., Caron, M., Amédro, F., Dupuis, C., Hardenbol, J., Gonzalez Donoso, J. M., et al. (1993b). Le Cénomanien de la région de Kalaat Senan (Tunisie centrale): Litho-biostratigraphie et interprétation séquentielle. Revue Micropaléontologie, 12, 351–505.

    Google Scholar 

  • Robaszynski, F., Caron, M., Amédro, F., Dupuis, C., Hardenbol, J., Gonzalez Donoso, J. M., et al. (1994). Le Cénomanien de la région de Kalaat Senan (Tunisie centrale). Litho-biostratigraphie et interprétation séquentielle. Revue de Paléobiologie, 12, 351–505.

    Google Scholar 

  • Robaszynski, F., Caron, M., Dupuis, C., Amédro, F., Gonzalez-Dononso, J. M., Linares, D., et al. (1990). A tentative integrated stratigraphy in the Turonian of Central Tunisia: Formations, zones and sequential stratigraphy in the Kalaat Senan area. Bulletin des Centres de Recherche Exploration-Production Elf-Aquitaine, 14, 218–384.

    Google Scholar 

  • Robaszynski, F., Hardenbol, J., Caron, M., Amédro, F., Dupuis, C., Gonzalez-Dononso, J. M., et al. (1993c). Stratigraphie séquentielle dans un environnement distal: le Cénomanien de la région de Kalaat Senan (Tunisie Centrale). Bulletin des Centres de Recherche Exploration-Production Elf-Aquitaine, 17, 395–433.

    Google Scholar 

  • Robaszynski, F., Zagrararni, M. F., Caron, M., & Amedro, F. (2010). The global bio-event at the Cenomanian–Turonien transition in the reduced Bahloul Formation of Bou Ghanem (central Tunisia). Cretaceous Research, 31, 1–15.

    Google Scholar 

  • Ruault-Djerrab, M., Ferré, B., Kechid-Benkherouf, F., & Djerrab, A. (2012). Etude micropaléontologique du Cénomano-Turonien dans la région de Tébessa (NE Algérie): Implications paléoenvironnementales et recherche de l’empreinte de l’OAE2. Revue de Paléobiologie, 31, 127–144.

    Google Scholar 

  • Ruault-Djerrab, M., Kechid-Benkherouf, F., & Djerrab, A. (2014). Données paléoenvironnementales sur le Vraconnien/Cénomanien de la région de Tébessa (Atlas Saharien, nord-est Algérie). Caractérisation de l’OAE2. Annales de Paléontologie, 100, 343–359.

    Google Scholar 

  • Scaife, J. D., Ruhl, M., Dickson, A. J., Mather, T. A., Jenkyns, H. C., Percival, L. M. E., et al. (2017). Sedimentary mercury enrichments as a marker for submarine large igneous province volcanism? Evidence from the Mid-Cenomanian event and oceanic anoxic event 2 (Late Cretaceous). Geochemistry, Geophysics, Geosystems, 18, 4253–4275.

    Google Scholar 

  • Schlanger, S. O., & Jenkyns, H. C. (1976). Cretaceoys oceanic anoxic events: Causes and consequences. Geologie en Mijnbouw, 55, 179–184.

    Google Scholar 

  • Scopelliti, S. O., Bellanca, A., Coccioni, R., Luciani, V., Neri, R., Baudin, F., et al. (2004). High-resolution geochemical and biotic records of the Tethyan’Bonarelli Level’ (OAE2, latest Cenomanian) from the Calabianca–Guidaloca composite section, northwestern Sicily, Italy. Palaeogeography, Palaeoclimatology, Palaeoecology, 208, 293–317.

    Google Scholar 

  • Scopelliti, G., Bellanca, A., Erba, E., Jenkyns, H. C., Neri, R., Tamagnini, P., et al. (2008). Cenomanian–Turonian carbonate and organic-carbon isotope records, biostratigraphy and provenance of a key section in NE Sicily, Italy: Palaeoceanographic and palaeogeographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 265, 59–77.

    Google Scholar 

  • Scotese, C. R. (2011). Paleogeographic and paleoclimatic atlas. Search and Discovery Article #30192. http://www.searchanddiscovery.com/pdfz/documents/2011/30192scotese/ndx_scotese.pdf.html. Accessed 28 Apr 2018.

  • Shahin, A. (1991). Cenomanian–Turonian ostracods from Gebel Nezzazat, southwestern Sinai, Egypt, with observations on δ13C values and the Cenomanian/Turonian boundary. Journal of Micropalaeontology, 10, 133–155.

    Google Scholar 

  • Shahin, A. (2007). Oxygen and Carbon isotopes and foraminiferal biostratigraphy of the Cenomanian–Turonian succession in Gabal Nezzazat, southwestern Sinai, Egypt. Revue de Paléobiologie, 26, 359–379.

    Google Scholar 

  • Shahin, A., & Elbaz, S. (2013). Cenomanian–Early Turonian of the shallow marine carbonate platform sequence at west central Sinai: Biostratigraphy, paleobathymetry and paleobiogeography. Revue de Micropaléontologie, 56, 103–126.

    Google Scholar 

  • Smith, A. B., Gale, A. S., & Monks, N. E. A. (2001). Sea-level change and rock-record bias in the Cretaceous: A problem for extinction and biodiversity studies. Paleobiology, 27, 241–253.

    Google Scholar 

  • Soua, M. (2011). Le Passage Cénomanien–Turonien en Tunisie: Biostratigraphie, chimiostratigraphie, cyclostratigraphie et stratigraphie séquentielle. Ph.D. Thesis Université de Tunis El Manar.

  • Soua, M. (2013). Siliceous and organic-rich sedimentation during the Cenomanian–Turonian oceanic anoxic event (OAE2) on the northern margin of Africa: An evidence from the Bargou area, Tunisia. Arabian Journal of Geosciences, 6, 1537–1557.

    Google Scholar 

  • Soua, M., and Tribovillard, N. (2007). Depositional model at the Cenomanian/Turonian boundary for the Bahloul Formation, Tunisia. Comptes Rendus Géoscience, 339(10), 692–701.

    Google Scholar 

  • Soua, M., Zaghbib-Turki, D., & O’Dogherty, L. (2006). Les réponses biotiques des radiolaires à l’événement anoxique du Cénomanien supérieur dans la marge sud Téthysienne (Tunisie). Mémoire ETAP, 26, 195–216.

    Google Scholar 

  • Soua, M., Zaghib-Turki, D., Fakhfakh-BenJemia, H., Smaoui, J., & Boukadi, A. (2011). The geochemical record of the Cenomanian–Turonian anoxic event in Tunisia. Is it correlative and isochronous to the biotic signal? Acta Geologica Sinica, 85, 801–840.

    Google Scholar 

  • Takashima, R., Nishi, H., Hayashi, K., Okada, H., Kawahata, H., Yamanaka, T., et al. (2009). Litho-, bio- and chemostratigraphy across the Cenomanian/Turonian boundary (OAE 2) in the Vocontian Basin of southeastern France. Palaeogeography, Palaeoclimatology, Palaeoecology, 273, 61–74.

    Google Scholar 

  • Topper, R. P. M., Trabucho-Alexandre, J., Tuenter, E., & Meijer, P. T. (2011). A regional ocean circulation model for the mid-Cretaceous North Atlantic Basin: Implications for black shale formation. Climate of the Past, 7, 277–297.

    Google Scholar 

  • Trabucho-Alexandre, J., Tuenter, E., Henstra, G. A., van der Zwan, K. J., van de Wal, R. S. W., Dijkstra, H. A., et al. (2010). The mid-Cretaceous North Atlantic nutrient trap: Black shales and OAEs. Paleoceanography, 25, PA4201.

    Google Scholar 

  • Tronchetti, G., & Grosheny, D. (1991). Les assemblages de foraminifères benthiques au passage Cénomanien–Turonien à Vergons, S-E France. Geobios, 24, 13–31.

    Google Scholar 

  • Tsikos, H., Jenkyns, H. C., Walworth-Well, B., Petrizzo, M. R., Forster, A., Kolonic, S., et al. (2004). Carbon isotope stratigraphy recorded by the Cenomanian–Turonian oceanic anoxic event: Correlation and implications based on three key localities. Journal of the Geological Society, 161, 711–719.

    Google Scholar 

  • Turgeon, S. C., & Creaser, R. A. (2008). Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode. Nature, 454, 323–326.

    Google Scholar 

  • Uchman, A., Rodríguez-Tovar, F. J., & Oszczypko, N. (2013). Exceptionally favourable life conditions for macrobenthos during the Late Cenomanian OAE- 2 event: Ichnological record from the Bonarelli Level in the Grajcarek Unit, Polish Carpathians. Cretaceous Research, 46, 1–10.

    Google Scholar 

  • Voigt, S., Erbacher, J., Mutterlose, J., Weiss, W., Westerhold, T., Wiese, F., et al. (2008). The Cenomanian–Turonian of the Wunstorf section—(North Germany): Global stratigraphic reference section and new orbital time scale for oceanic anoxic event 2. Newsletters on Stratigraphy, 43, 65–89.

    Google Scholar 

  • Wanas, H. A. (2008). Cenomanian rocks in the Sinai Peninsula, Northeast Egypt: Facies analysis and sequence stratigraphy. Journal of African Earth Sciences, 52, 125–138.

    Google Scholar 

  • Westermann, S., Caron, M., Fiet, N., Fleitmann, D., Matera, V., Adatte, T., et al. (2010). Evidence for oxic conditions during oceanic anoxic event 2 in the northern Tethyan pelagic realm. Cretaceous Research, 31, 500–514.

    Google Scholar 

  • Wilmsen, M., & Nagm, E. (2013). Sequence stratigraphy of the lower Upper Cretaceous (Upper Cenomanian–Turonian) of the Eastern Desert, Egypt. Newsletters on Stratigraphy, 46, 23–46.

    Google Scholar 

  • Wu, J., Liu, C., Fürsich, F. T., Yang, T., & Yin, J. (2015). Foraminifera as environmental indicators and quantitative salinity reconstructions in the Pearl River estuary, Southern China. Journal of Foraminiferal Research, 45, 205–219.

    Google Scholar 

  • Yilmaz, I. O., Altiner, D., Tekin, U. K., Tuysuz, O., Faruk Ocakoglu, F., & Acikalin, S. (2010). Cenomanian–Turonian oceanic anoxic event (OAE2) in the Sakarya Zone, northwestern Turkey: Sedimentological, cyclostratigraphic, and geochemical records. Cretaceous Research, 31, 207–226.

    Google Scholar 

  • Zaghbib-Turki, D., & Soua, M. (2013). High resolution biostratigraphy of the Cenomanian–Turonian interval (OAE2) based on planktonic foraminiferal bioevents in North-Central Tunisia. Journal of African Earth Sciences, 78, 97–108.

    Google Scholar 

  • Zagrarni, M. F., Negra, M. H., & Amine Hanini, A. (2008). Cenomanian–Turonian facies and sequence stratigraphy, Bahloul Formation, Tunisia. Sedimentary Geology, 204, 18–35.

    Google Scholar 

  • Zaoui, D., Meister, C., Benyuocef, M., Bensalah, M., Piuz, A., Tchenar, S., et al. (2017). Cenomanian–Turonian ammonite successions in the Tinrhert Basin (Southeast Algeria): Revision and new data. Cretaceous Research. https://doi.org/10.1016/j.cretres.2017.09.011.

    Google Scholar 

Download references

Acknowledgements

This research was funded by Project CGL2014-55274-P (Secretaría de Estado de I+D+I, Spain) and Research Group RNM-200 (Junta de Andalucía). C.A. Sánchez Quiñónez (Univ. Nacional Bogotá) is thanked for his help in the determination of some planktic foraminifera in thin sections. We acknowledge the work of Antonio Piedra-Martínez, Technician of the Laboratory of Geology (Universidad de Jaén) and Amparo Morales, technician of scanning electron microscopy (Centro de Instrumentación Científica-Técnica, Universidad de Jaén). This paper benefited from the useful comments by two anonymous reviewers and the Editor Kai-Uwe Gräfe. The authors thank Jean Louise Sanders for reviewing the grammar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matías Reolid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benadla, M., Reolid, M., Marok, A. et al. The Cenomanian–Turonian transition in the carbonate platform facies of the Western Saharan Atlas (Rhoundjaïa Formation, Algeria). J Iber Geol 44, 405–429 (2018). https://doi.org/10.1007/s41513-018-0070-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41513-018-0070-6

Keywords

Palabras clave

Navigation