Skip to main content

Advertisement

Log in

Cyclic carbonate–siliciclastic sedimentation in a shallow marine to coastal environment (latest Kimmeridgian–early Tithonian, Galve sub-basin, Spain)

  • Research Paper
  • Published:
Journal of Iberian Geology Aims and scope Submit manuscript

Abstract

The sedimentological analysis of the uppermost Kimmeridgian to lower Tithonian Villar del Arzobispo Formation (Galve sub-basin, NE Spain) has allowed characterizing different carbonate, mixed and siliciclastic facies deposited in coastal to shallow marine areas. Its age calibration has been specified on the basis of new biostratigraphic and chemostratigraphic data. Four successive sequences (30–80 m thick) characterized by the relative dominance of carbonate and siliciclastic facies reflect a sedimentary change from reciprocal to mixed carbonate–siliciclastic sedimentation. Sequences 1 and 2 are reciprocal sedimentation cycles from carbonate-dominated (muddy coastal plain-carbonate lagoon) to siliciclastic coasts (muddy coastal plain-wave dominated delta). Sequence S3 is also reciprocal, from a mixed carbonate–siliciclastic coastal plain-lagoon at the lower part to a wave-dominated delta on top. A mixed carbonate–siliciclastic coastal plain-lagoon characterizes the entire sequence 4. Climate and tectonics controlled carbonate deposition and siliciclastic supply. Reciprocal sedimentation in sequences 1–3 was controlled by orbitally-driven climate changes (from arid to humid conditions) on the age range of long-term eccentricity cycles. A greater imprint of extensional synsedimentary tectonics at the upper part of sequence 3 and during sequence 4 is thought to be the main factor producing the gradual opening of the sub-basin to the wave influence and a more continuous siliciclastic supply, then controlling the change from reciprocal to mixed sedimentation and obliterating the possible imprint of orbitally-induced climatic changes.

Resumen

El análisis sedimentológico de la Formación Villar del Arzobispo (sub-cuenca de Galve, NE España), de edad Kimmeridgiense superior a Titoniense inferior ha permitido caracterizar diferentes facies carbonatadas, mixtas y siliciclásticas depositadas en áreas costeras a marinas someras. Su calibración temporal ha sido especificada aportando nuevos datos bioestratigráficos y quimioestratigráficos. Cuatro secuencias sucesivas (de 30 a 80 m de espesor) caracterizadas por el dominio relativo de facies carbonatadas y siliciclásticas reflejan un cambio desde sedimentación recíproca a mixta carbonatada-siliciclástica. Las secuencias 1 y 2 son ciclos de sedimentación recíproca con depósitos carbonatados (llanura costera-laguna carbonatadas) y siliciclásticos (llanura costera a delta dominado por oleaje). La secuencia 3 es también recíproca, registrando una llanura costera-laguna somera mixta carbonatada-siliciclástica en su parte inferior, y un delta dominado por oleaje en la superior. La secuencia 4 está caracterizada por una llanura costera-laguna somera mixta carbonatada-siliciclástica. El clima y la tectónica controlaron la sedimentación carbonatada y los aportes siliciclásticos. Cambios climáticos (condiciones áridas a húmedas) inducidos por factores orbitales controlaron la sedimentación recíproca en las secuencias 1 a 3. La mayor influencia de la actividad tectónica extensiva sinsedimentaria en la parte superior de la secuencia 3 y durante la secuencia 4 se ha propuesto como el factor principal que produjo una apertura gradual de la sub-cuenca a la influencia del oleaje y un aporte siliciclástico más continuo, controlando el cambio de sedimentación recíproca a mixta y obliterando el posible registro de los cambios climáticos orbitales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Adapted from Aurell et al. (2016), Liesa et al. (2018) and Bádenas et al. (2018)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Atrops, F., & Meléndez, G. (1984). Kimmeridgian and Lower Tithonian from the Calanda-Berge area (Iberian Chain, Spain): Some biostratigraphic re-marks. In Proceedings 1st international symposium on jurassic stratigraphy (vol. 2, pp. 377–392). Erlangen.

  • Aurell, M., Bádenas, B., Gasca, J. M., Canudo, J. I., Liesa, C. L., Soria, A. R., et al. (2016). Stratigraphy and evolution of the Galve sub-basin (Spain) in the middle Tithonian—early Barremian: Implications for the setting and age of some dinosaur fossil sites. Cretaceous Research, 65, 138–162.

    Article  Google Scholar 

  • Aurell, M., Mas, R., Meléndez, A., & Salas, R. (1994). El tránsito Jurásico–Cretácico en la Cordillera Ibérica: Relación tectónica-sedimentación y evolución paleogeográfica. Cuadernos de Geología Ibérica, 18, 369–396.

    Google Scholar 

  • Aurell, M., Robles, S., Bádenas, B., Quesada, S., Rosales, I., Meléndez, G., et al. (2003). Transgressive–regressive cycles and Jurassic palaeogeography of northeast Iberia. Sedimentary Geology, 162, 239–271.

    Article  Google Scholar 

  • Aurell, M., Val, J., Bádenas, B., & Liesa, C. (2019). Discordancias asociadas a una etapa de rift del final del Jurásico en el sector central de la Subcuenca de Galve (Aguilar del Alfambra, Teruel). Geogaceta 65 (in press).

  • Bádenas, B., Aurell, M., & Gasca, J. M. (2018). Facies model of a mixed clastic–carbonate, wave-dominated open-coast tidal flat (Tithonian–Berriasian, north–east Spain). Sedimentology, 65(5), 1631–1666.

    Article  Google Scholar 

  • Bádenas, B., Salas, R., & Aurell, M. (2004). Three orders of regional sea-level changes control facies and stacking patterns of shallow platform carbonates in the Maestrat Basin (Tithonian–Berriasian, NE Spain). International Journal of Earth Sciences, 93(1), 144–162.

    Article  Google Scholar 

  • Bassoullet, J. P. (1997). Les grands foraminifères. Bulletin du Centre de Recherches Elf Exploration Production Mémoires, 17, 293–304.

    Google Scholar 

  • Bellotti, P., Milli, S., Tortora, P., & Valeri, P. (1995). Physical stratigraphy and sedimentology of the Late Pleistocene–Holocene Tiber Delta depositional sequence. Sedimentology, 42(4), 617–634.

    Article  Google Scholar 

  • Bhattacharya, J. P., & Giosan, L. (2003). Wave-influenced deltas: Geomorphological implications for facies reconstruction. Sedimentology, 50(1), 187–210.

    Article  Google Scholar 

  • Bhattacharya, J. P., & Walker, R. G. (1992). Deltas. In R. G. Walker & N. P. James (Eds.), Facies models: Response to sea-level change (pp. 157–177). St Johns: Geological Association of Canada.

    Google Scholar 

  • Bover-Arnal, T., Moreno-Bedmar, J. A., Frijia, G., Pascual-Cebrian, E., & Salas, R. (2016). Chronostratigraphy of the Barremian-Early Albian of the Maestrat Basin (E Iberian Peninsula): Integrating strontium-isotope stratigraphy and ammonoid biostratigraphy. Newsletters on Stratigraphy, 49(1), 41–68.

    Article  Google Scholar 

  • Bryant, J. D., Jones, D. S., & Mueller, P. A. (1995). Influence of freshwater flux on 87Sr/86Sr chronostratigraphy in marginal marine environments and dating of vertebrate and invertebrate faunas. Journal of Paleontology, 69, 1–6.

    Article  Google Scholar 

  • Campos-Soto, S., Cobos, A., Caus, E., Benito, M. I., Fernández-Labrador, L., Suarez-Gonzalez, P., et al. (2017). Jurassic Coastal Park: A great diversity of palaeoenvironments for the dinosaurs of the Villar del Arzobispo Formation (Teruel, eastern Spain). Palaeogeography Palaeoclimatology Palaeoecology, 485, 154–177.

    Article  Google Scholar 

  • Canicio, A., & Ibanez, C. (1999). The Holocene evolution of the Ebro Delta, Catalonia, Spain. Acta Geographica Sinica, 54, 462–469.

    Google Scholar 

  • Canudo, J. I., Aurell, M., Barco, J. L., Cuenca-Bescós, G., & Ruiz-Omeñaca, J. I. (2005). Los dinosaurios de la Formación Villar del Arzobispo (Titónico medio-Berriasiense inferior) en Galve (Teruel). Geogaceta, 38, 39–42.

    Google Scholar 

  • Canudo, J. I., Gasca, J. M., Moreno-Azanza, M., & Aurell, M. (2012). New information about the stratigraphic position and age of the sauropod Aragosaurus ischiaticus from the Early Cretaceous of the Iberian Peninsula. Geological Magazine, 149(2), 252–263.

    Article  Google Scholar 

  • Castanera, D., Barco, J. L., Díaz-Martínez, I., Gascón, J. H., Pérez-Lorente, F., & Canudo, J. I. (2011). New evidence of a herd of titanosauriform sauropods from the lower Berriasian of the Iberian range (Spain). Palaeogeography Palaeoclimatology Palaeoecology, 310, 227–237.

    Article  Google Scholar 

  • Catuneanu, O., Galloway, W. E., Kendall, C. G. S. C., Miall, A. D., Posamentier, H. W., Strasser, A., et al. (2011). Sequence stratigraphy: Methodology and nomenclature. Newsletters on Stratigraphy, 44(3), 173–245.

    Article  Google Scholar 

  • Cobos, A., Royo-Torres, R., Luque, L., Alcalá, L., & Mampel, L. (2010). An Iberian stegosaurs paradise: The Villar del Arzobispo Formation (Tithonian–Berriasian) in Teruel (Spain). Palaeogeography Palaeoclimatology Palaeoecology, 293(1–2), 223–236.

    Article  Google Scholar 

  • Coleman, J. M., & Wright, L. D. (1975). Modern river deltas: Variability of processes and sand bodies. In: Deltas: Models for Exploration, AAPG, pp 99–149.

  • Cuenca-Bescós, G., Badiola, A., Canudo, J. I., Gasca, J. M., & Moreno-Azanza, M. (2011). New Dryolestidan Mammal from the Hauterivian—Barremian Transition of the Iberian Peninsula. Acta Palaeontologica Polonica, 56(2), 257–267.

    Article  Google Scholar 

  • Dahanayake, K. (1977). Classification of oncoids from the Upper Jurassic carbonates of the French Jura. Sedimentary Geology, 18(4), 337–353.

    Article  Google Scholar 

  • Davies, P., Symonds, P., Feary, D., & Pigram, C. (1989). The evolution of the carbonate platforms of northeast Australia. In P. Crevello, J. Wilson, J. Sarg, & J. Read (Eds.), Carbonate platform and basin development (Vol. 44, pp. 233–257). Tulsa: SEPM (Society for Sedimentary Geology) Special Publication.

    Chapter  Google Scholar 

  • Davis, R. A. (1978). Beach and nearshore zone. Coastal sedimentary environments (pp. 237–285). New York: Springer.

    Chapter  Google Scholar 

  • Díaz-Molina, M., & Yébenes, A. (1987). La sedimentación litoral y continental durante el Cretácico Inferior. Sinclinal de Galve, Teruel. Estudios Geológicos, 43, 3–21.

    Google Scholar 

  • Díaz-Molina, M., Yébenes, A., Goy, A., & Sanz, J. L. (1984). Landscapes inhabited by Upper Jurassic/Lower Cretaceous archosaurs. In III Symposium Mesozoic terrestrial ecosystems (pp. 67–72).

  • Doyle, L. J., & Roberts, H. H. (1988). Carbonate—clastic transitions, developments in sedimentology (Vol. 42, p. 304). Amsterdam: Elsevier.

    Google Scholar 

  • Fanos, A. M., Khafagy, A. A., & Komar, P. D. (1995). Long and short term changes of Rosetta Promontory, Egypt. In E. Ozhan (Ed.), MEDCOAST 95 (pp. 1033–1046). Ankara: MEDCOAST.

    Google Scholar 

  • Flügel, E. (2010). Microfacies and archaeology. Microfacies of carbonate rocks (pp. 903–915). Berlin: Springer.

    Chapter  Google Scholar 

  • Föllmi, K. (2012). Early Cretaceous life, climate and anoxia. Cretaceous Research, 35, 230–257.

    Article  Google Scholar 

  • García-Penas, A., & Aurell, M. (2017). Tectono–sedimentary evolution around the Jurassic–Cretaceous transition in Galve (Aguilar del Alfambra Formation, Teruel, Iberian Chain). Revista de la Sociedad Geológica de España, 30(2), 79–90.

    Google Scholar 

  • Geyer, O. F., & Pelleduhn, R. (1979). Sobre la estratigrafía y la facies espongiolítica del Kimmeridgiense de Calanda (provincia de Teruel). Cuad. Geol, 10, 67–72.

    Google Scholar 

  • Goldhammer, R. (2003). Cyclic sedimentation. In G. Middleton, M. Church, M. Coniglio, L. Hardie, & F. Longstaffe (Eds.), Encyclopedia of sediments and sedimentary rocks (pp. 271–293). The Netherlands: Springer.

    Google Scholar 

  • Gradstein, F. M., Ogg, J. G., Schmitz, M., & Ogg, G. (2012). The geologic time scale 2012. Oxford: Elsevier.

    Google Scholar 

  • Hay, W., & Floegel, S. (2012). New thoughts about the Cretaceous climate and oceans. Earth Science Reviews, 115, 262–272.

    Article  Google Scholar 

  • Hernández, A., Godoy, A., Alvaro, M., Ramírez, J., Leal, M., Aguilar, M., et al. (1985). Mapa Geológico de España. Escala 1:200.000 (First edition), nº47 (Teruel). Madrid: IGME.

    Google Scholar 

  • Hower, J. (1961). Some factors concerning the nature and origin of glauconite. American Mineralogist Journal of Earth and Planetary Materials, 46, 313–334.

    Google Scholar 

  • Hunter, R. E. (1977). Basic types of stratification in small eolian dunes. Sedimentology, 24(3), 361–387.

    Article  Google Scholar 

  • Ineson, J., & Surlyk, F. (2000). Carbonate mega-breccias in a sequence stratigraphic context: Evidence from the Cambrian of North Greenland. In D. Hunt & R. Gawthorpe (Eds.), Sedimentary responses to forced regression (Vol. 172, pp. 47–68). London: Geological Society of London Special Publications.

    Google Scholar 

  • Liesa, C. L., Soria, A. R., Casas, A., Aurell, M., Meléndez, N., Bádenas, B., et al. (2018). The Late Jurassic–Early Cretaceous rifting stage at the central and eastern Iberian Basin: The central and eastern Iberian Basin. Geology of Iberia: A geodynamic approach. Berlin: Springer.

    Google Scholar 

  • Liesa, C. L., Soria, A. R., Meléndez, N., & Meléndez, A. (2006). Extensional fault control on the sedimentation patterns in a continental rift basin: El Castellar Formation, Galve sub-basin, Spain. Journal of the Geological Society, 163(3), 487–498.

    Article  Google Scholar 

  • Maldonado, A. (1975). Sedimentation, stratigraphy, and development of the Ebro Delta, Spain. In M. L. Broussard (Ed.), Deltas, models for exploration (pp. 311–338). Houston: Houston Geological Society.

    Google Scholar 

  • Mas, R., Alonso, A., & Meléndez, N. (1984). La formación Villar del Arzobispo: Un ejemplo de llanuras de marea siliciclásticas asociadas a plataformas carbonatadas. Jurásico terminal (NW de Valencia y E de Cuenca). Publicaciones de Geología, 20, 175–188.

    Google Scholar 

  • McArthur, J. M., Howarth, R. J., & Shields, G. A. (2012). Strontium isotope stratigraphy. In: The geologic time scale (pp. 127–144).

  • Meléndez, N., Liesa, C. L., Soria, A. R., & Meléndez, A. (2009). Lacustrine system evolution during early rifting: El Castellar formation (Galve sub-basin, Central Iberian Chain). Sedimentary Geology, 222(1–2), 64–77.

    Article  Google Scholar 

  • Meléndez, A., Pardo, G., Pendón, J. G., & Villena, J. (1979). Las facies terminales del Jurásico en el sector central de la Cordillera Ibérica. Cuad. Geol., 10, 137–148.

    Google Scholar 

  • Mount, J. (1984). Mixing of siliciclastic and carbonate sediments in shallow shelf environments. Geology, 12, 432–435.

    Article  Google Scholar 

  • Niedoroda, A. W., Swift, D. J., Hopkins, T. S., & Ma, C. M. (1984). Shoreface morphodynamics on wave-dominated coasts. Marine Geology, 60(1–4), 331–354.

    Article  Google Scholar 

  • Park, R. K. (2010). The impact of sea-level change on ramp margin deposition: Lessons from the Holocene sabkhas of Abu Dhabi, United Arab Emirates. Quaternary Carbonate and Evaporite Sedimentary Facies and Their Ancient Analogues A Tribute to Douglas James Shearman, 24, 89–111.

    Google Scholar 

  • Pérez-Lorente, F., & Ortega, F. (2003). Dos nuevos rastros de arcosaurios en el Cretácico inferior de Galve (Teruel. España). Dinosaurios y otros reptiles mesozoicos en España (pp. 129–136). La Rioja: Instituto de Estudios Riojanos.

    Google Scholar 

  • Purdy, E. G., & Gischler, E. (2003). The Belize margin revisited: 1. Holocene marine facies. International Journal of Earth Sciences, 92(4), 532–551.

    Article  Google Scholar 

  • Ruiz-Omeñaca, J. I., Canudo, J. I., Aurell, M., Bádenas, B., Barco, J. L., Cuenca-Bescós, G., et al. (2004). Estado de las investigaciones sobre los vertebrados del Jurásico Superior y Cretácico Inferior de Galve (Teruel). Estudios Geológicos, 60(3–6), 179–202.

    Google Scholar 

  • Salas, R., Guimerà, J., Mas, R., Martín-Closas, C., Meléndez, A., & Alonso, A. (2001). Evolution of the Mesozoic central Iberian Rift System and its Cainozoic inversion (Iberian chain). Peri Tethys Memoir, 6, 145–185.

    Google Scholar 

  • Saller, A., Dickson, J., Rasbury, E., & Ebato, T. (1999). Effects of long-term accommodation change on short-term cycles, Upper Palaeozoic platform limestones, West Texas. In P. Harris, A. Saller, & J. Simo (Eds.), Advances in sequence stratigraphy: Application to reservoirs outcrops and models (Vol. 63, pp. 227–246). Tulsa: SEPM (Society for Sedimentary Geology) Special Publication.

    Chapter  Google Scholar 

  • Schwarz, E., Veiga, G. D., Trentini, G. Á., & Spalletti, L. A. (2016). Climatically versus eustatically controlled, sediment-supply-driven cycles: Carbonate–siliciclastic, high-frequency sequences in the Valanginian of the Neuquén Basin (Argentina). Journal of Sedimentary Research, 86(4), 312–335.

    Article  Google Scholar 

  • Sestini, G. (1989). Nile delta: A review of depositional environments and geological history. In M. K. G. Whateley & K. T. Pickering (Eds.), Deltas: Sites and traps for fossil fuel (Vol. 41, pp. 99–127). London: Geological Society London Special Publications.

    Google Scholar 

  • Southgate, P. N., Kennard, J. M., Jackson, M. J., O’Brien, P. E., & Sexton, M. J. (1993). reciprocal lowstand clastic and highstand carbonate sedimentation, subsurface Devonian Reef Complex, Canning Basin, Western Australia. In R. Locks & J. Sarg (Eds.), Carbonate sequence stratigraphy (Vol. 57, pp. 157–179). New York: AAPG Memoir.

    Google Scholar 

  • Strasser, A. (1986). Ooids in Purbeck limestones (lowermost Cretaceous) of the Swiss and French Jura. Sedimentology, 33(5), 711–727.

    Article  Google Scholar 

  • Taylor, A. M., & Goldring, R. (1993). Description and analysis of bioturbation and ichnofabric. Journal of the Geological Society of London, 150, 141–148.

    Article  Google Scholar 

  • Tucker, M. E. (2003). Mixed clastic–carbonate cycles and sequences: Quaternary of Egypt and Carboniferous of England. Geologia Croatica, 56(1), 19–37.

    Google Scholar 

  • Vaidyanadhan, R., & Rao, M. S. (1979). Morphology and evolution of Godavari delta, India. Zeitschrift für Geomorphologie, 23, 243–255.

    Google Scholar 

  • Van Houten, F. B., & Purucker, M. E. (1984). Glauconitic peloids and chamositic ooids-favorable factors, constraints, and problems. Earth Science Reviews, 20(3), 211–243.

    Article  Google Scholar 

  • Van Siclen, D. C. (1958). Depositional topography—examples and theory. AAPG Bulletin, 42(8), 1897–1913.

    Google Scholar 

  • Vennin, E., & Aurell, M. (2001). Stratigraphie sequentielle de l’Aptien du sous-bassin de Galve (Province de Teruel, NE de l’Espagne). Bulletin de la Société Géologique de France, 172(4), 397–410.

    Article  Google Scholar 

  • Walker, R. G. (1984). Facies models: Geoscience Canada, reprint series 1 (p. 317). Alberta: Geological Association of Canada.

    Google Scholar 

  • Wierzbowski, H., Anczkiewicz, R., Pawlak, J., Rogov, M. A., & Kuznetsov, A. B. (2017). Revised Middle-Upper Jurassic strontium isotope stratigraphy. Chemical Geology, 466, 239–255.

    Article  Google Scholar 

  • Wilson, J. L. (1967). Cyclic and reciprocal sedimentation in Virgilian strata of southern New Mexico. Geological Society of America Bulletin, 78(7), 805–818.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the project CGL2017-85038-P subsidized by the Spanish Ministry of Science and Innovation, the European Regional Development Fund and the project H54 of the Government of Aragón (‘Grupos Consolidados’ and ‘Dirección General de Patrimonio Cultural’). Diego Castanera is supported by AGAUR, (Beatriu de Pinós Programme, BP2017). The authors are sincerely thankful to Telm Bover Arnal and another anonymous reviewer, whose useful suggestions have improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Val.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Val, J., Aurell, M., Bádenas, B. et al. Cyclic carbonate–siliciclastic sedimentation in a shallow marine to coastal environment (latest Kimmeridgian–early Tithonian, Galve sub-basin, Spain). J Iber Geol 45, 195–222 (2019). https://doi.org/10.1007/s41513-018-00098-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41513-018-00098-1

Keywords

Palabras clave

Navigation