Advertisement

Journal of Iberian Geology

, Volume 43, Issue 1, pp 75–96 | Cite as

Paleoecological quantitative analysis based on benthic foraminifera of the Aalenian–Bajocian boundary (upper Bradfordensis–lower Discites) in the Barranco de Agua Larga section (Betic Cordillera, Southern Spain)

  • S. C. Silva
  • M. L. Canales
  • J. Sandoval
  • M. H. Henriques
Research Article

Abstract

Purpose

To report, for the first time, the benthic foraminiferal assemblages recorded across the upper Bradfordensis–lower Discites ammonite zones (Aalenian–Bajocian boundary, Middle Jurassic) in the Barranco de Agua Larga section (Betic Cordillera, Southern Spain),in order to infer the paleecological conditions that affected their development.

Methods

A total of 17 samples were collected in this reference section, and the composition of the foraminiferal assemblages recorded throughout the studied stratigraphical was analyzed using quantitative data obtained through the estimation of relative abundances and the calculation of several diversity indexes.

Results

The assemblages are abundant (a total of 3, 139 well-preserved specimens) and diverse(82 species). Their composition displays close similarities to those already described for the Jurassic carbonate platforms of the Boreal Realm (Type-A), Boreal Atlantic subdivision.

Conclusions

The studied assemblages were developed in distal marine environmental conditions, at a depth situated above the level of the calcite compensation, well oxygenated and with normal salinity, although for certain times (Aalenian–Bajocian boundary) unfavorable environmental conditions could have developed. The sharp decrease in the abundance and diversity that was recorded during the Aalenian–Bajocian transition has also been recognized in other coeval basins of the Iberian Plate paleomargin, thus representing a bioevent of regional rank.

Keywords

Foraminifera Middle Jurassic Betic Cordillera Paleoecology 

Resumen

Objetivo

Describir, por primera vez, las asociaciones de foraminíferos bentónicos registradas en materiales del intervalo comprendido entre la parte superior de la Zona Bradfordensis y la Zona Discites (límite Aaleniense–Bajociense, Jurásico Medio) en la sección de Barranco de Agua Larga (Cordillera Bética, sur de España), con el fin de inferir las condiciones paleoecológicas que condicionaron su desarrollo.

Metodología

Se analizó la composición de las asociaciones de foraminíferos registrados en 17 muestras recogidas en esta sección de referencia a lo largo del intervalo estratigráfico estudiado utilizando datos cuantitativos obtenidos a través de la estimación de abundancias relativas y del cálculo de varios índices de diversidad.

Resultados

Las asociaciones son abundantes (se han obtenido un total de 3139 ejemplares bien conservados) y diversas (82 especies). Su composición muestra similitudes con asociaciones ya descritas en las plataformas carbonatadas jurásicas del Dominio Boreal (tipo A), Subdivisión Boreal Atlántica.

Conclusiones

Las asociaciones estudiadas se desarrollaron en condiciones ambientales marinas distales, a una profundidad situada por encima del nivel de compensación de la calcita, bien oxigenada y con salinidad normal, aunque en ciertos momentos pudieran haberse desarrollado condiciones ambientales desfavorables. Así, en el tránsito Aaleniense-Bajociense se registra una notable disminución en la abundancia y en la diversidad de las asociaciones registradas. Este evento, previamente reconocido en otras cuencas mesozoicas de la Placa Ibérica, tendría carácter regional.

Palabras clave

Foraminifera Jurásico Medio Cordillera Bética Paleoecología 

Notes

Acknowledgements

This study was supported by Fundo Europeu de Desenvolvimento Regional - FEDER funds through the Competitiveness Factors Operational Programme - COMPETE and Portuguese funds by Fundação para a Ciência e a Tecnologia - FCT in the frame of the UID/Multi00073/2013 project, and is a contribution for the Projects CGL2011-25894 (DGI, Spain), CGL2015-66604-R and CGL2014-52546-P (MINECO) and for the Grupo de Investigación UCM 910431 (Complutense University, Madrid, Spain). The authors are grateful to the Centro Nacional de Microscopía Electrónica, Universidad Complutense de Madrid, for the SEM photographs. They also acknowledge suggestions and comments provided by Dr. Lourdes Omaña and by an anonymous reviewer.

Supplementary material

41513_2017_5_MOESM1_ESM.docx (77 kb)
Appendix A: Taxonomic index (DOCX 76 kb)
41513_2017_5_MOESM2_ESM.docx (51 kb)
Appendix B: Abundances of the species identified in the studied assemblages (DOCX 51 kb)
41513_2017_5_MOESM3_ESM.docx (28 kb)
Appendix C: Relative abundances (percentages) of the species identified in the studied assemblages (DOCX 28 kb)
41513_2017_5_MOESM4_ESM.docx (16 kb)
Appendix D: Relative abundances (percentages) of the genera identified in the studied assemblages (DOCX 16 kb)
41513_2017_5_MOESM5_ESM.docx (14 kb)
Appendix E: Relative abundances (percentages) of the families identified in the studied assemblages (DOCX 14 kb)
41513_2017_5_MOESM6_ESM.docx (13 kb)
Appendix F: Relative abundances (percentages) of the suborders identified in the studied assemblages (DOCX 13 kb)

References

  1. Alonso-Chaves, F. M., Andreo, B., Arias, C., Azañón, J. M., Balanya, J. C., Barón, A., et al. (2004). Cordillera Bética y Baleares: Zonas Externas Béticas. In J. A. Vera (Ed.), Geología de España (Vol. 4, pp. 346–460). Madrid: SGE-IGME.Google Scholar
  2. Andrade, J. B. (2006). Los Braquiópodos del Tránsito Jurásico Inferior-Jurásico Medio de la Cuenca Lusitánica (Portugal). Coloquios de Paleontología, 56, 5–194.Google Scholar
  3. Bartolini, A., Baumgartner, P. O., & Guex, J. (1999). Middle and Late Jurassic radiolarian palaeoecology versus carbon-isotope stratigraphy. Palaeogeography, Palaeoclimatology, Palaeoecology, 145, 43–60. doi: 10.1016/s0031-0182(98)00097-2.CrossRefGoogle Scholar
  4. Bartolini, A., Nocchi, M., Baldanza, A., & Parisi, G. (1992). Benthic life during the Early Toarcian Anoxic Event in the Southwestern Tethyan Umbria-Marche Basin, Central Italy (pp. 323–338). Tokai University Press.Google Scholar
  5. Beerbower, J. R., & Jordan, D. (1969). Application of information theory to paleontologic problems: Taxonomic diversity. Journal of Paleontology, 43(5), 1184–1198. doi: 10.2307/1302429.Google Scholar
  6. Brouwer, J. (1969). Foraminiferal assemblages from the Lias of NW Europe. Koninklijke Nederlandse Akademie van Wetenschappen Verhandelingen Afdeling Natuurkunde Tweede Reeks, 25, 1–48.Google Scholar
  7. Bushnev, D. A., Shchepetova, E. V., & Lyyurov, S. V. (2006). Organic geochemistry of Oxfordian carbon-rich sedimentary rocks of the Russian Plate. Lithology and Mineral Resources, 41(5), 423–434. doi: 10.1134/s0024490206050038-9.CrossRefGoogle Scholar
  8. Canales, M. L. (1998). Foraminíferos del Aaleniense en la Cuenca Vasco-Cantábrica. Unpublished Ph.D. thesis, Departamento de Paleontología, Universidad Complutense de Madrid.Google Scholar
  9. Canales, M. L. (2001). Los foraminíferos del Aaleniense (Jurásico Medio) en la Cuenca Vasco-Cantábrica (N de España). Revista Española de Micropaleontología, 33, 253–438.Google Scholar
  10. Canales, M. L., García-Baquero, G., Henriques, M. H., & Figueiredo, V. L. (2014). Palaeoecological distribution pattern of Early-Middle Jurassic benthic foraminifera in the Lusitanian Basin (Portugal) based on multivariate analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 410, 14–26. doi: 10.1016/j.palaeo.2014.05.007.CrossRefGoogle Scholar
  11. Canales, M. L., & Henriques, M. H. (2008). Foraminifera from the Aalenian and the Bajocian GSSP (Middle Jurassic) of Murtinheira section (Cabo Mondego, West Portugal): Biostratigraphy and paleoenvironmental implications. Marine Micropaleontology, 67, 155–179. doi: 10.1016/j.marmicro.2008.01.003.CrossRefGoogle Scholar
  12. Canales, M. L., & Henriques, M. H. (2013). Foraminiferal assemblages from the Bajocian Global Stratotype Section and Point (GSSP) at Cape Mondego (Portugal). Journal of Foraminiferal Research, 43(2), 182–206. doi: 10.2113/gsjfr.43.2.182.CrossRefGoogle Scholar
  13. Canales, M. L., & Henriques, M. H. (2015). Palaeoenvironmental significance of the foraminiferal assemblages from the Bajocian GSSP (Cape Mondego, Portugal). In AAPG European regional conference and exhibition (pp. 82–83), Lisbon, Portugal.Google Scholar
  14. Canales, M. L., Henriques, M. H., Figueiredo, V. L., & Guterres, H. (2010). Foraminifera from the Lower-Middle Jurassic of the Lusitanian Basin (Portugal)—Biostratigraphy and palaeoecological significance. In R. Pena dos Reis, & N. Pimentel (Eds.), Rediscovering the Atlantic: New ideas for an old sea. II Central & North Atlantic Conjugate Margins Conference, Lisbon (pp. 42–46).Google Scholar
  15. Canales, M. L., Henriques, M. H., & Ureta, S. (2000). Análisis de las asociaciones de foraminíferos del Aaleniense en los márgenes oriental y noroccidental de la Placa Ibérica: Implicaciones biogeográficas y bioestratigráficas. In Acta do I Congresso Ibérico de Paleontologia/XVI Jornadas de la Sociedad Española de Paleontologia, Évora, Portugal (pp. 8–9).Google Scholar
  16. Canales, M. L., & Herrero, C. (2000). Asociaciones de foraminíferos del Toarciense superior y Aaleniense en la sección de Moyuela (Zaragoza, España). Revista Española de Micropaleontología, 32, 301–317.Google Scholar
  17. Canales, M. L., Ureta, S., Hernández, L., & García-Frank, A. (2013). Bieostratigrafía comparada y bioeventos (ammonoideos y foraminíferos) del tránsito Aaleniense—Bajociense (Jurásico Medio) en Hontoria del Pinar (Noroeste de la Cordillera Ibérica). In C. López & I. Rodríguez (Eds.), Libro de Resúmenes (pp. 139–140). Córdoba: XXIX Jornadas de la Sociedad Española de Paleontología.Google Scholar
  18. Copestake, P., & Johnson, B. (1984). Lower Jurassic (Hettangian-Toarcian) Foraminifera from the Mochras Borehole, North Wales (UK) and their application to a worldwide biozonation. In H. J. Oertli (ed.), Benthos’ 83, 2nd International Symposium on Benthic Foraminifera (Pau, 1983). Elf Aquitaine, Esso REP and Total CFP, Pau and Bordeaux (pp. 183–184).Google Scholar
  19. Ellis, B. F., & Messina, A. (1940-1990). Catalogue of Foraminifera. New York: Museum of Natural History.Google Scholar
  20. Figueiredo, V. (2009). Foraminíferos da Passagem Jurássico Inferior-Médio do Sector Central da Bacia Lusitânica: o perfil de Zambujal de Alcaria. Unpublished M.Sc. thesis, Universidade de Coimbra, Portugal.Google Scholar
  21. Figueiredo, V. L., Canales, M. L., & Henriques, M. H. (2014). Foraminifera of the Toarcian-Aalenian boundary from the Lusitanian Basin (Portugal): a paleoecological analysis. Journal of Iberian Geology, 40(3), 409–450. doi: 10.5209/rev_JIGE.2014.v40.n3.43885.CrossRefGoogle Scholar
  22. Figueiredo, V., & Guterres, H. (2012). Análise Quantitativa das Associações de Foraminíferos da Passagem Jurássico Inferior—Médio do Perfil de Maria Pares (Setor Norte da Bacia Lusitânica, Portugal)—Implicações Paleoecológicas. In F. C. Lopes, A. I. Andrade, M. H. Henriques, M. Ferreira-Quinta, M. T. Barata, & R. Pena dos Reis (Eds.), Para Conhecer a Terra. Memórias e Notícias de Geociências no Espaço Lusófono (pp. 151–159). Coimbra: Imprensa da Universidade de Coimbra.CrossRefGoogle Scholar
  23. Figueiredo, V. L., Henriques, M. H., & Canales, M. L. (2010). Foraminíferos bentónicos da passagem Jurássico Inferior—Médio do sector central da Bacia Lusitânica: o perfil de Zambujal de Alcaria. Boletim de Geociências da Petrobras, 19(1/2), 207–231.Google Scholar
  24. Franke, A. (1936). Die Foraminiferen des deutschen Lias. Abhandlungen der Preussischen Geologischen Landesanstalt, Neue Folge, 169, 1–138.Google Scholar
  25. Franz, M., & Knott, S. (2012). Foraminifera from the Callovian GSSP candidate section of Albstadt-Pfeffingen Middle Jurassic, Southern Germany. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 264, 263–282. doi: 10.1127/0077-7749/2012/0240.CrossRefGoogle Scholar
  26. García-Frank, A. (2006). Evolución biosedimentaria y secuencial del Júrasico Medio inferior en la Cuenca Ibérica (Sector NO). Unpublished Ph.D. thesis, Departamento de Paleontología, Universidad Complutense de Madrid.Google Scholar
  27. Giusberti, L., & Coccioni, R. (2003). Posadia feroniensis n. gen., n. sp. (Lituolida, Hormosinidae) from the Bathonian of Sardinia, Italy. Journal of Foraminiferal Research, 33(3), 211–218. doi: 10.2113/33.3.211.CrossRefGoogle Scholar
  28. Gómez, J. J., & Fernández-López, S. R. (2004). Las unidades litoestratigráficas del Jurásico Medio de la Cordillera Ibérica. Geogaceta, 35, 94–97.Google Scholar
  29. Gómez, J. J., Rengifo, C., & M. J., Goy, A. (2003). Las unidades litoestratigráficas del Júrasico Inferior de las Cordilleras Ibérica y Costero Catalana. Revista de la Sociedad Geológica de España, 16(3/4), 227–237, ISSN: 2255-1379.Google Scholar
  30. González Fernández, M. I., & Vicente, J. (2004). Mapa Geológico de España con la inclusión de Portugal continental y Pirineos franceses E. 1:2.000.000. In J. A. Vera (Ed.), Geología de España. Madrid: I.G.M.E.Google Scholar
  31. Gordon, W. A. (1970). Biogeography of Jurassic foraminifera. Bulletin of the Geological Society of America, 81, 1689–1704. doi:10.1130/0016-7606(1970)81[1689:BOJF]2.0.CO;2.CrossRefGoogle Scholar
  32. Hammer, O., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 9.Google Scholar
  33. Haynes, J. R. (1981). Foraminifera. London: Macmillan Publishers Ltd.CrossRefGoogle Scholar
  34. Henriques, M. H., & Canales, M. L. (2013). Ammonite-benthic foraminifera biostratigraphy across the Lower-Middle Jurassic transition of São Gião section (Lusitanian Basin, Portugal). Geobios, 46, 395–408. doi: 10.1016/j.geobios.2013.06.002.CrossRefGoogle Scholar
  35. Henriques, M. H., Canales, M. L., Figueiredo, V., García-Frank, A., Hernández, L., Silva, S., & Ureta, S. (2014). Biostratigrafia integrada (Ammonoidea, Foraminiferida) da passagem Jurássico Inferior-Médio na Península Ibérica: resultados preliminares. Comunicações Geológicas, 101(Especial I), 443–446.Google Scholar
  36. Henriques, M. H., Canales, M. L., Neto, K., & Antunes, R. L. (2010). DAY 1; STOP 1A—Cabo Mondego North. In R. Pena dos Reis & N. Pimentel (Eds.), Rediscovering the Atlantic: new ideas for an old sea. II Central & North Atlantic Conjugate Margins Conference, Lisbon (pp. 9–15).Google Scholar
  37. Henriques, M. H., Canales, M. L., Silva, S. C., & Figueiredo, V. (2016). Integrated biostratigraphy (Ammonoidea, Foraminiferida) of the Aalenian of the Lusitanian Basin (Portugal): a synthesis. Episodes, 39(3), 482–490. doi: 10.18814/epiugs/2016/v39i3/99742.CrossRefGoogle Scholar
  38. Henriques, M. H., Gardin, S., Gomes, C. R., Soares, A. F., Rocha, R. B., Marques, J. F., Lapa, M. R. & Montenegro, J. D. (1994). The Aalenian-Bajocian boundary at Cabo Mondego (Portugal). Miscellanea—Servizio Geologico Nazionale, 5, 63–67.Google Scholar
  39. Hernández, L. (2015). Foraminíferos da passagem AalenianoBajociano no Sector Setentrional da Cordilheira IbéricaO perfil de Talveila. Unpublished M.Sc. thesis, Universidade de Coimbra.Google Scholar
  40. Herrero, C., & Canales, M. L. (1997). Diversidad en los foraminíferos del tránsito Toarciense/Aaleniense en la sección de Fuentelsaz (Cordillera Ibérica). Revista Española de Paleontología, 12, 233–242, ISSN: 0213-6937.Google Scholar
  41. Herrero, C., & Canales, M. L. (2002). Taphonomic processes in selected Lower and Middle Jurassic foraminifera from the Iberian Range and Basque-Cantabrian Basin (Spain). Journal of Foraminiferal Research, 32(1), 22–42. doi: 10.2113/0320022.CrossRefGoogle Scholar
  42. Johnson, B. (1977). Ecological ranges of selected Toarcian and Domerian (Jurassic) foraminiferal species from Wales. In G. H. T. Schafer & R. P. Bernard (Eds.), 1 st international symposium on Benthonic Foraminifera of continental margins. Part B: Paleoecology and biostratigraphy (Halifax, 1975). Maritime Sediments, Special Publication (Vol. 1, pp. 545–556).Google Scholar
  43. Kuznetsova, K.I. (2007). Distribution of Benthonic Foraminifera in Upper Jurassic and Lower Cretaceous Deposits at Site 261, DSDP leg 27, in the Eastern Indian Ocean. Deep Sea Drilling Project Reports and Publications. Geological Institute of the USSR Academy of Sciences, Moscow, Vol. XXVII(34), pp. 673–676.Google Scholar
  44. Linares, A., & Sandoval, J. (1990). The lower boundary of the Bajocian in “Barranco de Agua Larga” section (Subbetic Domain, Southern Spain). Memória Descritiva da Carta Geológica, XL (pp. 13–22).Google Scholar
  45. Linares, A., & Sandoval, J. (1996). The genus Haplopleuroceras (Erycitidae, Ammonitina) in the Betic Cordillera, Southern Spain. Geobios, 29, 287–305. doi: 10.1016/S0016-6995(96)80030-1.CrossRefGoogle Scholar
  46. Loeblich, A. R., & Tappan, H. (1988). Foraminifera genera and their classification (Vol. 2). New York: Van Nostrand Reinhold Company.CrossRefGoogle Scholar
  47. López-Otálvaro, G. E., Suchéras-Marx, B., Giraud, F., Mattioli, E., & Lecuyer, C. (2012). Discorhabdus as a key coccolith genus for paleoenvironmental reconstructions (Middle Jurassic, Lusitanian Basin): Biometry and taxonomic status. Marine Micropaleontology, 94(95), 45–57. doi: 10.1016/j.marmicro.2012.06.003.CrossRefGoogle Scholar
  48. Molina, E. (2004). Micropaleontología. Concepto, historia y estado actual. In E. Molina (Ed.), Micropaleontología (pp. 13–33). España: Prensas Universitarias de Zaragoza. ISBN 84-7733-619-9.Google Scholar
  49. Morris, P. H., & Coleman, B. E. (1989). The Aalenian to Callovian (Middle Jurassic). In D. G. Jenkins & J. W. Murray (Eds.), Stratigraphical Atlas of Fossil Foraminifera (2nd ed., pp. 189–236). Chichester: Ellis Horwood Limited.Google Scholar
  50. Münster, W. R. (1987). Subdelloidina luterbacheri sp. nov. (Foraminifera) from Kimmeridgian to Tithonian (Upper Jurassic) Sponge-algal facies of Southern Germany. Paläontologie Zeitschrift, 61(1/2), 29–40.Google Scholar
  51. Murray, J. W. (1989). An outline of faunal changes through the Phanerozoic. In D. G. Jenkins & J. W. Murray (Eds.), Stratigraphical Atlas of Fossil Foraminifera (pp. 570–573). Chichester: Ellis Horwood Limited.Google Scholar
  52. Murray, J. W. (1991). Ecology and paleoecology of Benthic Foraminifera. New York: Wiley.Google Scholar
  53. Nagy, J. (1992). Environmental significance of foraminiferal morphogroups in Jurassic North Sea deltas. Palaeogeography, Palaeoclimatology, Palaeoecology, 95, 111–134. doi: 10.1016/0031-0182(92)90168-5.CrossRefGoogle Scholar
  54. Nagy, J., Reolid, M., & Rodríguez-Tovar, F. J. (2009). Foraminiferal morphogroups in dysoxic shelf deposits from the Jurassic of Spitsbergen. Polar Research, 28, 214–221. doi: 10.1111/j.1751-8369.2009.00112.x.CrossRefGoogle Scholar
  55. Nikitenko, B. L. (2008). The Early Jurassic to Aalenian paleobiogeography of the Artic Realm: Implications of microbenthos (foraminifers and ostracods). Stratigraphy and Geological Correlation, 16, 59–80. doi: 10.1007/s11506-008-1005-z.Google Scholar
  56. O’Dogherty, L., Sandoval, J., Bartolini, A., Bruchez, S., Bill, M., & Guex, J. (2006). Carbon-isotope stratigraphy and ammonite faunal turnover for the Middle Jurassic in Southern Iberian Palaeomargin. Palaeogeography, Palaeoclimatology, Palaeoecology, 239, 311–333. doi: 10.1016/j.palaeo.2006.01.018.CrossRefGoogle Scholar
  57. Oblak, K. (2007). Most abundant Middle Miocene rotaliinas (Suborder Rotaliina, Foraminifera) of Kozjansko (Eastern Slovenia). Geologija, 50(2), 293–322. doi: 10.5474/geologija.2007.021.CrossRefGoogle Scholar
  58. Payard, J. M. (1947). La faune de Foraminifères du Lias supérieur du Détroit Poitevin. Ph.D. thesis, Faculté des Sciences de l’Université de Paris.Google Scholar
  59. Perilli, N., Henriques, M. H., & Giannetti, M. (2002a). Aalenian calcareous nannofossils changes and Lotharingius/Watznaueria turnover: evidence from the Lusitanian Basin (Portugal). Journal of Nannoplankton Research, 24(1), 145.Google Scholar
  60. Perilli, N., Henriques, M. H., & Ureta, M. S. (2002b). Aalenian calcareous nannofossil biohorizons of some sections, from Lusitanian Basin and Basque-Cantabrian Area. Seminario de Paleontología de Zaragoza, 5, 162–166.Google Scholar
  61. Reolid, M. (2007). Taphonomic features of Lenticulina as a tool for paleoenvironmental interpretation of midshelf deposits of the Upper Jurassic (Prebetic zone, southern Spain). Palaios, 23, 482–494. doi: 10.2110/palo.2007.p07-032r.CrossRefGoogle Scholar
  62. Reolid, M., Chakiri, S., & Bejjaji, Z. (2013). Adaptative strategies of the Toarcian benthic foraminiferal assembages from the Middle Atlas (Marocco): palaeoecological implications. Journal of African Earth Science, 84, 1–12. doi: 10.1016/j.jafrearsci.2013.03.008.CrossRefGoogle Scholar
  63. Reolid, M., Marok, A., & Sèbane, A. (2014). Foraminiferal assemblages and geochemistry for interpreting the incidence of Early Toarcian environmental changes in North Gondwana paleomargin (Traras Mountains, Algeria). Journal of African Earth Science, 95, 105–122. doi: 10.1016/j.jafrearsci.2014.03.004.CrossRefGoogle Scholar
  64. Reolid, M., & Martínez-Ruiz, F. (2012). Comparison of benthic foraminifera and geochemical proxies in shelf deposits from the Upper Jurassic of the Prebetic (southern Spain). Journal of Iberian Geology, 38, 449–465. doi: 10.5209/rev_JIGE.2012.v38.n2.40468.Google Scholar
  65. Reolid, M., Nagy, J., Rodríguez-Tovar, F. J., & Olóriz, F. (2008). Foraminiferal assemblages as palaeoenvironmental bioindicators in Late Jurassic epicontinental platforms: Relation with trophic conditions. Acta Palaeontologica Polonica, 53(4), 705–722. doi: 10.4202/app.2008.0413.CrossRefGoogle Scholar
  66. Reolid, M., Sebane, A., Rodríguez-Tovar, F. J., & Marok, A. (2012). Foraminiferal morphogroups as a tool to approach the Toarcian Anoxic Event in the Western Saharan Atlas (Algria). Palaeogeography, Palaeoclimatology, Palaeoecology, 323–325, 87–99. doi: 10.1016/j.palaeo.2012.01.034.CrossRefGoogle Scholar
  67. Rey, J., Bonnet, L., Cubaynes, R., Qajoun, A., & Ruget, C. (1994). Sequence stratigraphy and biological signals: Statistical studies of benthic foraminifera from Liassic series. Palaeogeography, Palaeoclimatology, Palaeoecology, 111, 149–171. doi: 10.1016/0031-0182(94)90353-0.CrossRefGoogle Scholar
  68. Riegraf, W. (1985). Mikrofauna, Biostratigraphie und Fazies im Unteren Toarcium Südwestdeutschlands und Vergleiche mit Benachbarten Gebieten. Tübingen Mikropaläontologie, 3, 1–233.Google Scholar
  69. Ruban, D. A., & Tyszka, J. (2005). Diversity dynamics and mass extinctions of the Early-Middle Jurassic foraminifers: A record from the Northwestern Caucasus. Palaeogeography, Palaeoclimatology, Palaeoecology, 222, 329–343. doi: 10.1016/j.palaeo.2005.03.021.CrossRefGoogle Scholar
  70. Sadki, D. (2015). Integrated biostratigraphy across the Aalenian/Bajocian boundary of the Central High Atlas, Morocco. Volumina Jurassica, XIII(1), 27–42. doi: 10.5604/17313708.1148554.Google Scholar
  71. Sandoval, J. (1983). Bioestratigrafía y Paleontología (Stephanocerataceae y Perisphinctaceae) del Bajocense y Bathoniense en las Cordilleras Béticas. Unpublished Ph.D. thesis, Universidad de Granada.Google Scholar
  72. Sandoval, J. (1990). Revision of the Bajocian division in the Subbetic Domain (Southern Spain). Memoire Descritive della Carta Geologia d’Italia, 40, 141–162.Google Scholar
  73. Sandoval, J., & Chandler, R. B. (2000). The Sonniniid ammonite Euhoploceras from the Middle Jurassic of South-West England and Southern Spain. Palaeontology, 43, 495–535. doi: 10.1111/j.0031-0239.2000.00137.x.CrossRefGoogle Scholar
  74. Sandoval, J., Henriques, M. H., Ureta, S., Goy, A., & Rivas, P. (2001). The Lias/Dogger boundary in Iberia: Betic and Iberian cordilleras and Lusitanian basin. Bulletin de la Société géologique de France, 72, 387–395. doi: 10.2113/172.4.387. (Published on July 2001, First Published on July 01, 2001).CrossRefGoogle Scholar
  75. Sandoval, J., Martínez, G., & Ureta, S. (2015). Toarcian-Aalenian Erycitinae, Ammonitida, of the westernmost Tethys (Southern Spain): taxonomical and phylogenetical implications. Palaeontographica, Abteilung A: Palaeozoology Stratigraphy, 304, 77–119. doi: 10.1127/pala/304/2015/77.CrossRefGoogle Scholar
  76. Sandoval, J., O’Dogherty, L., Aguado, R., Bartolini, A., Bruchez, S., & Bill, M. (2008). Aalenian carbon-isotope stratigraphy: Calibration with ammonite, radiolarian and nannofossil events in the Western Tethys. Palaeogegraphy, Palaeoclimatology, Palaeoecology, 257, 115–137. doi: 10.1016/j.palaeo.2008.06.013.CrossRefGoogle Scholar
  77. Scheibnerová, V. (1968). On the discovery of Microfauna in the Opalinus Beds (Klippen Belt, West Carpathians). Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Historische Geologie, 8, 51–65.Google Scholar
  78. Sebane, A., Marok, A., & Elmi, S. (2007). Évolution des peuplements de foraminifères pendant la crise toarcienne à l’exemple des données des Monts des Ksour (Atlas Saharien Occidental. Algérie. Comptes Rendus Palevol, 6(3), 189–196. doi: 10.1016/j.crpv.2006.10.002.CrossRefGoogle Scholar
  79. Silva, S. C. (2013). Foraminíferos da Passagem AalenianoBajociano: O perfil da Serra da Boa Viagem II. Unpublished M.Sc. thesis, Universidade de Coimbra.Google Scholar
  80. Silva, S., Henriques, M. H., & Canales, M. L. (2014). Análise paleoecológica baseada em foraminíferos da passagem Aaleniano–Bajociano (Jurássico Médio) no perfil da Serra da Boa Viagem II. Comunicações Geológicas, pp. 573–576. http://www.lneg.pt/iedt/unidades/16/paginas/26/30/185.
  81. Silva, S., Henriques, M. H., & Canales, M. L. (2015). High resolution ammonite-benthic foraminiferal biostratigraphy across the Aalenian-Bajocian boundary in the Lusitanian Basin (Portugal). Geological Journal, 50(4), 477–496. doi: 10.1002/gj.2556.CrossRefGoogle Scholar
  82. Suchéras-Marx, B., Mattioli, E., Giraud, F., & Escarguel, G. (2015). Paleoenvironmental and paleobiological origins of coccolithophorid genus Watznaueria emergence during the late Aalenian-early Bajocian. Paleobiology, 41(3), 415–443. doi: 10.1017/pab.2015.8.CrossRefGoogle Scholar
  83. Tröster, J. (1987). Biostratigraphie des Obertoarcium und der Toarcium/Aalenium-grenze der Bohrungen Weiach, Beznau, Riniken und Schafisheim (Nordschweiz). Eclogae Geologicae Helvetiae, 80(2), 431–447. doi: 10.5169/seals-166005.Google Scholar
  84. Tyszka, J. (1994). Paleoenvironmental implications from ichnological and microfaunal analyses of Bajocian Spotty Carbonates, Pieniny Klippen Belt, Polish Carpathians. Palaios, 9, 175–187. doi: 10.2307/3515104.CrossRefGoogle Scholar
  85. Tyszka, J. (2001). Microfossil assemblages as bathymetric indicators of the Toarcian/Aalenian “Fleckenmergel”—Facies in the Carpathian Pieniny Klippen Belt. Geologica Carpathica, 52(3), 147–158.Google Scholar
  86. Ureta, S. (1983). Biostratigrafía y Paleontología (Ammonitina) del Aaleniense en el Sector Noroccidental de la Cordillera Ibérica. Ph.D. thesis, Departamento de Paleontolog´ıa, Universidad Complutense de Madrid.Google Scholar
  87. Ustinova, M. A. (2009). The Distribution of Calcareous Nannofossils and Foraminifers in the Callovian, Oxfordian, and Volgian Deposits in the Southwest of Moscow. Stratigraphy and Geological Correlation, 17(2), 204–217. doi: 10.1134/S0869593809020087.CrossRefGoogle Scholar
  88. Vera, J. A. (2001). Evolution of the South Iberian Continental Margin. In P.A. Ziegler, W. Cavazza, A.H.F. Robertson, S. Crasquin-Soleau (Eds.), Peri-Tethyan rift/wrench basins and passive margins. Mémoires du Museum National d’Histoire Naturelle, 186, pp. 109–143.Google Scholar
  89. Vera, J. A., & Martín-Algarra, A. (2004). Cordillera Bética y Baleares: Divisiones mayores y nomenclatura. In J. A. Vera (Ed.), Geología de España (Vol. 4, pp. 348–350). Madrid: SGE-IGME.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Earth Sciences and Geosciences Centre, Faculty of Sciences and TechnologyUniversity of Coimbra (Polo II)CoimbraPortugal
  2. 2.Department of Paleontology, Faculty of Geological SciencesUniversity Complutense of MadridMadridSpain
  3. 3.Department of Stratigraphy and PaleontologyUniversity of GranadaGranadaSpain

Personalised recommendations