Journal of Iberian Geology

, Volume 43, Issue 1, pp 13–32 | Cite as

Petrography, biomarker composition, mineralogy, inorganic geochemistry and paleodepositional environment of coals from La Ballesta mine, Peñarroya Basin, Spain

  • E. Lorenzo
  • A. G. Borrego
  • G. Márquez
  • F. González
  • C. Moreno
Research Article
  • 187 Downloads

Abstract

Purpose

The purpose of this work is to study coal samples from various exposed seams of the La Ballesta mine, at the southeastern edge of the Peñarroya-Belmez-Espiel coalfield, southwestern Spain. Shaly seat- and caprocks were also investigated.

Method

Petrographic, palynological, and biomarker analyses were carried out. The major elements were determined by X-ray fluorescence (XRF). The trace elements were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS).

Results

The Pennsylvanian (Westphalian)-age, high volatile bituminous coal studied is a humic coal with vitrinite concentrations of over 86% on a minerals-free basis and low amounts of liptinite and inertinite. The coals have a relatively higher volatile matter yields than the bituminous coals in western areas of the basin with similar vitrinite reflectance values and present both a dark and a light variety of vitrinite. The dark variety is more abundant in the low ash coals considered to have been formed in nearby lacustrine settings. The mineral assemblage of the coals and non-coal (roof and floor) rocks from the La Ballesta mine is dominated by quartz, kaolinite and illite, with minor to trace proportions of epigenetic carbonates, anatase, and K-feldspar, among others.

Conclusions

Concentrations of B and B/Be ratios, along with other data, suggest that the La Ballesta coals may have originated from topogenous mires that developed next to lacustrine settings. Coal seams 9, 9bis, and 14 were probably more restricted systems than coaly shale 15, the latter corresponding to swamps associated with alluvial and floodplain environments. Abnormally high concentrations of trace elements such as Li, Rb, Cs, Sc, V and Cr might be explained by the input of detrital minerals into the Peñarroya Basin from the outcropping Precambrian and Lower Palaeozoic rocks to the northeast. In this regard, elemental ratios such as Al2O3/TiO2 for the samples suggest that the modes of occurrence of the trace elements, and the minerals, in La Ballesta coals and non-coal rocks are to be mainly attributed to detrital input from felsic to intermediate metamorphic rocks.

Keywords

Bituminous C coal La Ballesta mine Peñarroya–Belmez–Espiel coalfield Petrography Geochemistry 

Resumen

Objetivo

El objetivo de este trabajo es estudiar una serie de muestras de carbón de varios mantos aflorantes de la mina La Ballesta, en el margen suroriental de la cuenca minera de Peñarroya-Belmez-Espiel, suroeste de España. Las correspondientes lutitas infra- y suprayacentes también fueron investigadas.

Métodos

Análisis petrográficos, palinológicos y de biomarcadores fueron realizados. Los elementos mayoritarios se analizaron por fluorescencia de rayos X (XRF). Los elementos traza se analizaron por espectrometría de masas con plasma acoplado inductivamente (ICP-MS).

Resultados

El carbón bituminoso alto volátil de edad Pensilvánica (Westfaliense), extraído en la zona de La Ballesta, es un carbón húmico con concentraciones de vitrinita de más del 86% en base libre de materia mineral y bajas cantidades de liptinita e inertinita. Estos carbones tienen una proporción de materia volátil relativamente mayor que en el caso de los carbones bituminosos de las parte occidental de la cuenca en estudio, pero poseen similares valores de reflectancia de la vitrinita, y presentan una variedad oscura y otra clara de vitrinita. La variedad oscura es más abundante en los carbones con bajo contenido en ceniza que se han formado en las cercanías de un medio lacustre. La mineralogía de carbones y lutitas (infra- y suprayacentes) de la mina La Ballesta está dominada por el cuarzo, caolinita e illita, con proporciones menores a trazas de carbonatos epigenéticos, anatasa y feldespato potásico, entre otros.

Conclusiones

Las concentraciones de B y ratios B/Be, entre otros datos, sugieren que los carbones de La Ballesta se habrían formado a partir de cenagales que se desarrollaron junto a lagos. Los carbones 9, 9bis, and 14 se relacionan probablemente con sistemas más restringidos que en el caso de la lutita carbonosa 15; correspondiendo esta última con pantanos asociados con ambientes aluviales y llanuras de inundación. Unos valores anormalmente altos de las concentraciones de elementos traza tales como Li, Rb, Cs, Sc, V y Cr se pueden explicar por el aporte de minerales detríticos en la Cuenca Belmez-Espiel Peñarroya procedentes del afloramiento hacia el noreste de rocas de edad Precámbrica y Paleozoica temprana. A este respecto, relaciones elementales tales como Al2O3/TiO2 sugieren que el origen de los elementos traza y las fases minerales, en carbones y lutitas de La Ballesta, pueden ser principalmente atribuido al aporte de detritos derivados de rocas metamórficas de tipo félsico a intermedio.

Palabras clave

carbón bituminoso C mina La Ballesta cuenca Peñarroya-Belmez-Espiel petrografía geoquímica 

Notes

Acknowledgements

Authors are grateful to the company ENCASUR for providing access to the samples. We are also grateful to the two anonymous reviewers for their comments which helped us to improve the original version of the manuscript.

References

  1. Alastuey, A., Jiménez, A., Plana, F., Querol, X., & Suárez-Ruiz, I. (2001). Geochemistry, mineralogy and technological properties of the main Stephanian (Carboniferous) coal seams from the Puertollano Basin, Spain. International Journal of Coal Geology, 45, 181–195.CrossRefGoogle Scholar
  2. Álvarez-Vázquez, C. (1995). The early Westphalian macroflora of the Peñarroya–Belmez–Espiel basin (Cordoba). Unpublished Doctoral thesis. Oviedo (Spain): Universidad de Oviedo.Google Scholar
  3. Andreis, R. R., & Wagner, R. H. (1983). Study of alluvial fans at the northern edge of the Westphalian B Peñarroya–Belmez basin (Córdoba). In M. J. Lemos de Sousa (Ed.), Contributions to the carboniferous geology and paleontology of the Iberian Peninsula (pp. 171–227). Oporto: Universidade do Porto.Google Scholar
  4. ASTM International ASTM D 388 (2011). Standard classification of coals by rank. In Annual book of ASTM Standards: petroleum products, lubricants, and fossil fuels; gaseous fuels; coal and coke, sec. 5, v. 5.06 (pp. 372–378). West Conshohocken: ASTM.Google Scholar
  5. ASTM International ASTM D 4596 (2007). Standard practice for collection 01 channel samples of coal in a mine. In Annual book of ASTM Standards: petroleum products, lubricants, and fossil fuels; gaseous fuels; coal and coke, sec. 5, v. 5.06. West Conshohocken: ASTM.Google Scholar
  6. Auras, S., Wilde, V., Hoernes, S., Scheffler, K., & Püttmann, W. (2006). Biomarker composition of higher plant macrofossils from Late Palaeozoic sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 240, 305–317.CrossRefGoogle Scholar
  7. Barnerjee, I., & Goodarzi, F. (1990). Paleoenvironment and sulfur–boron contents of the Mannville (Lower Cretaceous) coals of southern Alberta, Canada. Sedimentary Geology, 67, 297–310.CrossRefGoogle Scholar
  8. Benedict, L. G., Thompson, R. R., Shigo, J. J., & Aikman, R. P. (1968). Pseudovitrinite in Appalachian coking coals. Fuel, 47, 125–143.Google Scholar
  9. Borrego, A. G., Blanco, C. G., & Püttmann, W. (1997). Geochemical significance of the aromatic distribution in the bitumens of the Puertollano oil shales. Organic Geochemistry, 26, 219–228.CrossRefGoogle Scholar
  10. Borrego, A. G., Marbán, G., Alonso, M. J. G., Álvarez, D., & Menéndez, R. (2000). Maceral effects in the determination of proximate volatiles in coals. Energy and Fuels, 14, 117–126.CrossRefGoogle Scholar
  11. Bouška, V., & Pešek, J., (1983). Boron in the aleuropelites of the Bohemian massif. In 5th meeting of the European clay groups (Prague) (pp. 147–155).Google Scholar
  12. Brown, G. (1961). The X-ray identification and crystal structures of clay minerals. London: Mineralogical Society.Google Scholar
  13. Colmenero, J. R., Fernández, L. P., Moreno, C., Bahamonde, J. R., Barba, P., Heredia, N., et al. (2002). Carboniferous. In W. Gibbons & T. Moreno (Eds.), Geology of Spain (pp. 120–153). London: The Geological Society of London.Google Scholar
  14. Coquel, R. (2004). Etude palynologique du Westphalien du basin houiller de Peñarroya–Bélmez–Espiel, Espagne (Andalousie). Palaeontographica Abteilung, B, 267, 1–18.Google Scholar
  15. Dai, S., Liu, J., Ward, C. R., Hower, J. C., Xie, P., Jiang, Y., et al. (2015a). Petrological, geochemical, and mineralogical compositions of the low-Ge coals from the Shengli Coalfield, China: A comparative study with Ge-rich coals and a formation model for coal-hosted Ge ore deposit. Ore Geology Reviews, 71, 318–349.CrossRefGoogle Scholar
  16. Dai, S., Seredin, V. V., Ward, C. R., Hower, J. C., Xing, Y., Zhang, W., et al. (2015b). Enrichment of U–Se–Mo–Re–V in coals preserved within marine carbonate successions: geochemical and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China. Mineralium Deposita, 50, 159–186.CrossRefGoogle Scholar
  17. Dai, S., Song, W., Zhao, L., Li, X., Hower, J. C., Ward, C. R., et al. (2014). Determination of boron in coal using closed-vessel microwave digestion and inductively coupled plasma mass spectrometry (ICPMS). Energy and Fuels, 28, 4517–4522.CrossRefGoogle Scholar
  18. Dai, S., Wang, P., Ward, C. R., Tang, Y., Song, W., Jiang, J., et al. (2015c). Elemental and mineralogical anomalies in the coal-hosted Ge ore deposit of Lincang, Yunnan, southwestern China: Key role of N2–CO2-mixed hydrothermal solutions. International Journal of Coal Geology, 152, 19–46.CrossRefGoogle Scholar
  19. Dai, S., Yang, J., Ward, C. R., Hower, J. C., Liu, H., Garrison, T. M., et al. (2015d). Geochemical and mineralogical evidence for a coal-hosted uranium deposit in the Yili Basin, Xinjiang, northwestern China. Ore Geology Reviews, 70, 1–30.CrossRefGoogle Scholar
  20. Dai, S., Zhang, W. G., Seredin, V. V., Ward, C. R., Hower, J. C., Song, W. J., et al. (2013a). Factors controlling geochemical and mineralogical compositions of coals preserved within marine carbonate successions: A case study from the Heshan Coalfield, southern China. International Journal of Coal Geology, 109, 77–100.CrossRefGoogle Scholar
  21. Dai, S., Zhang, W., Ward, C. R., Seredin, V. V., Hower, J. C., Li, X., et al. (2013b). Mineralogical and geochemical anomalies of late Permian coals from the Fusui Coalfield, Guangxi Province, southern China: Influences of terrigenous materials andhydrothermal fluids. International Journal of Coal Geology, 105, 60–84.CrossRefGoogle Scholar
  22. Diessel, C. F. K. (1992). Coal-bearing depositional systems. Berlin: Springer.CrossRefGoogle Scholar
  23. Diessel, C. F. K. (2010). The stratigraphic distribution of inertinite. International Journal of Coal Geology, 81, 251–268.CrossRefGoogle Scholar
  24. Diessel, C. F. K., & Gammidge, L. (1998). Isometamorphic variations in reflectance and fluorescence of vitrinite—a key to depositional environment. International Journal of Coal Geology, 36, 167–222.CrossRefGoogle Scholar
  25. DiMichele, W. A., Kerp, H., Tabor, N. J., & Looy, C. V. (2008). The so-called “Paleophytic-Mesophytic” transition in equatorial Pangea-multiple biomes and vegetational tracking of climate change through geological time. Palaeogeography, Palaeoclimatology, Palaeoecology, 268, 152–163.CrossRefGoogle Scholar
  26. DiMichele, W. A., & Philips, T. L. (1988). Paleoecology of the Middle Pennsylvanian age Herrin coal swamp near a contemporaneous river system, the Walshville Paleochannel. Review of Palaeobotany and Palynology, 56, 151–176.CrossRefGoogle Scholar
  27. DiMichele, W. A., & Philips, T. L. (1994). Paleobotanical and paleoecological constraints on models of peat formation in the Late Carboniferous of Euramerica. Palaeogeography, Palaeoclimatology, Palaeoecology, 106, 39–90.CrossRefGoogle Scholar
  28. Eble, C. F., Hower, J. C., & Andrews, W. M., Jr. (1994). Paleoecology of the Fire Clay coal bed in a portion of the Eastern Kentucky coalfield. Palaeogeography, Palaeoclimatology, Palaeoecology, 106, 287–305.CrossRefGoogle Scholar
  29. Fabianska, M. J., Bzowska, G., Matuszewska, A., Racka, M., & Skret, U. (2003). Gas chromatography and mass spectrometry in goechemical investigation of organic matter of the Grodziec Beds (Upper Carboniferous), Upper Silesian Coal Basin (Poland). Chemie der Erde-Geochemistry, 63, 63–91.CrossRefGoogle Scholar
  30. Fleck, S., Michels, R., Izart, A., Elie, M., & Landais, P. (2001). Paleoenvironmental assessment of Westphalian fluvio-lacustrine deposits of Lorraine (France) using a combination of organic geochemistry and sedimentology. International Journal of Coal Geology, 48, 65–88.CrossRefGoogle Scholar
  31. Gabaldón, V., & Quesada, C. (1986). Examples de bassins houillers limniques du sud-ouest de la péninsule Ibérique: évolution sédimentaire et contrôle structural. Mémoire de la Société géologique de France, 149, 27–36.Google Scholar
  32. Gentzis, T., & Goodarzi, F. (1994). Reflectance suppression in some Cretaceous coals from Alberta, Canada. In P. K. Mukhopadhyay & W. G. Dow (Eds.), Vitrinite reflectance as a maturity parameter: Applications and limitations, ACS Symposium Series 570 (pp. 93–110).Google Scholar
  33. Gluskoter, J. J., Ruth, R. R., Miller, W. G., Cahill, R. A., Dreher, G. B., & Kuhn, J. K. (1977). Trace elements in coal: occurrence and distribution. III State Geological Survey Circular, 499, 1–154.Google Scholar
  34. Golonka, J., Ross, M. I., & Scotese, C. R. (1995). Phanerozoic paleogeographic and paleoclimatic modelling maps. Canadian Society of Petroleum Geologists Memoir, 17, 1–47.Google Scholar
  35. González, F., Moreno, C., Lorenzo, E., & Márquez, G. (2016). Vegetation distribution and coal-forming environments in a strike-slip basin. The Pennsylvanian Peñarroya–Belmez–Espiel Basin, southern Spain. Terra Nova, 28, 171–180.CrossRefGoogle Scholar
  36. Goodarzi, F., & Swaine, D. J. (1994). Paleoenvironmental and environmental implications of the boron content of coals. Geological Survey Canadian Bulletin, 471, 1–76.Google Scholar
  37. Gurba, L. W., & Ward, C. R. (1998). Vitrinite reflectance anomalies in high-volatile bituminous coals of the Gunnedah Basin, New South Wales, Australia. International Journal of Coal Geology, 36, 111–140.CrossRefGoogle Scholar
  38. Hackley, P. C., Warwick, P. D., & González, E. (2005). Petrology, mineralogy and geochemistry of mined coals, western Venezuela. International Journal of Coal Geology, 63, 68–97.CrossRefGoogle Scholar
  39. Hayashi, K. I., Fujisawa, H., Holland, H. D., & Ohmoto, H. (1997). Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61, 4115–4137.CrossRefGoogle Scholar
  40. Hughes, W. B., Holba, A. G., & Dzou, L. I. P. (1995). The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochimica et Cosmochimica Acta, 59, 3581–3598.CrossRefGoogle Scholar
  41. Iglesias, M. J., Jiménez, A., del Río, J. C., & Suárez-Ruiz, I. (2000). Molecular characterisation of vitrinite in relation to natural hydrogen enrichment and depositional environment. Organic Geochemistry, 31, 1285–1299.CrossRefGoogle Scholar
  42. International Committee for Coal and Organic Petrology (ICCP). (1998). The new vitrinite classification (ICCP System 1994). Fuel, 77, 349–358.Google Scholar
  43. International Committee for Coal and Organic Petrology (ICCP). (2001). The new inertinite classification (ICCP System 1994). Fuel, 80, 459–471.CrossRefGoogle Scholar
  44. ISO 1171. (2010). Solid mineral fuels—determination of ash. Geneva: International Organization for Standardization.Google Scholar
  45. ISO 11760. (2005). Classification of coals. Geneva: International Organization for Standardization.Google Scholar
  46. ISO 1928. (2009). Solid mineral fuels—determination of gross calorific value by the bomb calorimetric method and calculation of net calorific value. Geneva: International Organization for Standardization.Google Scholar
  47. ISO 19579. (2006). Solid mineral fuels—determination of sulfur by IR spectrometry. Geneva: International Organization for Standardization.Google Scholar
  48. ISO 29541. (2010). Solid mineral fuels—Determination of total carbon, hydrogen and nitrogen content—Instrumental method. Geneva: International Organization for Standardization.Google Scholar
  49. ISO 562. (2010). Hard coal and coke—determination of volatile matter. Geneva: International Organization for Standardization.Google Scholar
  50. ISO 687. (2010). Solid mineral fuels—coke—determination of moisture in the general analysis test sample. Geneva: International Organization for Standardization.Google Scholar
  51. ISO 7404-2. (2009). Methods for the petrographic analysis of coals—part 2: Methods of preparing coal samples. Geneva: International Organization for Standardization.Google Scholar
  52. ISO 7404-3. (2009). Methods for the petrographic analysis of coals—part 3: Method of determining maceral group composition. Geneva: International Organization for Standardization.Google Scholar
  53. ISO 7404-5. (2009). Methods for the petrographic analysis of coals—part 5: Method of determining microscopically the reflectance of vitrinite. Geneva: International Organization for Standardization.Google Scholar
  54. Izart, A., Palhol, F., Gleixner, G., Elie, M., Blaise, T., Suárez-Ruíz, I., et al. (2012). Palaeoclimate reconstruction from biomarker geochemistry and stable isotopes of n-alkanes from Carboniferous and Early Permian humic coals and limnic sediments in western and eastern Europe. Organic Geochemistry, 43, 125–149.CrossRefGoogle Scholar
  55. Jewell, D. M., Albaugh, E. W., Davis, B. E., & Ruberto, R. G. (1974). Integration of chromatographic and spectroscopic techniques for the characterization of residual oils. Industrial and Engineering Chemistry Fundamentals, 13, 278–282.CrossRefGoogle Scholar
  56. Jiang, C., Alexander, R., Kagi, R. I., & Murray, A. P. (1998). Polycyclic aromatic hydrocarbons in ancient sediments and their relationships to palaeoclimate. Organic Geochemistry, 29, 1721–1735.CrossRefGoogle Scholar
  57. Jiménez, A., Martínez-Tarazona, R., & Suárez-Ruiz, I. (1999). Paleoenvironmental conditions of Puertollano coals (Spain): Petrological and geochemical study. International Journal of Coal Geology, 41, 189–211.CrossRefGoogle Scholar
  58. Kalkreuth, W. D. (1982). Rank and petrographic composition of selected Jurassic-Lower Cretaceous coals of British Columbia, Canada. Bulletin Canadian Petroleum Geology, 30, 112–139.Google Scholar
  59. Karayigit, A. I., Spears, D. A., & Booth, C. A. (2000). Distribution of environmental sensitive trace elements in the Eocene Sorgun coals, Turkey. International Journal of Coal Geology, 42, 297–314.CrossRefGoogle Scholar
  60. Kemezys, M., & Taylor, G. H. (1964). Occurrence and distribution of minerals in some Australian coals. Fuel, 38, 389–397.Google Scholar
  61. Ketris, M. P., & Yudovich, Y. E. (2009). Estimations of Clarkes for Carbonaceous biolithes: World average for trace element contents in black shales and coals. International Journal of Coal Geology, 78, 135–148.CrossRefGoogle Scholar
  62. Kolker, A., Palmer, C. A., & Ruppert, L. F. (2003). Modes of Occurrence of Trace Elements in Coals. In USGS short course C. Denver: US Geological Survey.Google Scholar
  63. Li, X., Dai, S., Zhanga, W., Li, T., Zheng, X., & Chen, W. (2014). Determination of As and Se in coal and coal combustion products using closed vessel microwave digestion and collision/reaction cell technology (CCT) of inductively coupled plasma mass spectrometry (ICP-MS). International Journal of Coal Geology, 124, 1–4.CrossRefGoogle Scholar
  64. Liu, J., Yang, Z., Yan, X., Ji, D., Yang, Y., & Hu, L. (2015). Modes of occurrence of highly-elevated trace elements in superhigh-organic-sulfur coals. Fuel, 156, 190–197.CrossRefGoogle Scholar
  65. Lorenzo, E. (2012). Geoquímica y petrografía orgánicas de los carbones de los mantos 9, 14 y 15 de la mina “La Ballesta” (Cuenca Peñarroya): Implicaciones paleoambientales y paleodeposicionales. Unpublished M.Sc. thesis. Huelva: Universidad de Huelva.Google Scholar
  66. Lyons, P. C., Palmer, C. A., Bostick, N. H., Fletcher, J. D., Dulong, F. T., Brown, F. W., et al. (1989). Chemistry and origin of minor and trace elements in vitrinite concentrates from a rank series from the Eastern United States, England and Australia. International Journal of Coal Geology, 13, 481–527.CrossRefGoogle Scholar
  67. Marques, M.M. (1993). Contribuçao para o conhecimiento da petrología dos carvoes da Bacia de Peñarroya–Belmez–Espiel (Cordova-Espanha). Unpublished Doctoral thesis. Oporto: Universidade do Porto.Google Scholar
  68. Marques, M. M. (2002). Coal facies and depositional environments of the Aurora and Cabeza de Vaca Units, Peñarroya–Belmez–Espiel Coalfield (Córdoba, Spain). International Journal of Coal Geology, 48, 197–216.CrossRefGoogle Scholar
  69. Martínez-Poyatos, D.J (2002). Estructura del borde meridional de la Zona Centroibérica y su relación con el contacto entre las zonas Centroibérica y de Ossa Morena. Serie Nova Terra nº 18. Coruña: Edicios do Castro.Google Scholar
  70. Meyers, P. A., & Ishiwatari, R. (1993). Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Organic Geochemistry, 20, 867–900.CrossRefGoogle Scholar
  71. Moore, T. A., & Shearer, J. C. (2003). Peat/coal type and depositional environment—are they related? International Journal of Coal Geology, 56, 233–252.CrossRefGoogle Scholar
  72. Noble, R.A. (1986). A geochemical study of bicyclic alkanes and diterpenoid hydrocarbons in crude oils, sediments and coals. Unpublished Doctoral thesis. Preth: The University of Western Australia.Google Scholar
  73. Noble, R. A., Alexander, R., & Kagi, R. I. (1987). Configurational isomerization in sedimentary bicyclic alkanes. Organic Geochemistry, 11, 151–156.CrossRefGoogle Scholar
  74. O’Keefe, J. M. K., Bechtel, A., Christanis, K., Dai, S., DiMichele, W. A., Eble, C. F., et al. (2013). On the fundamental difference between coal rank and coal type. International Journal of Coal Geology, 118, 58–87.CrossRefGoogle Scholar
  75. Ortuño, M.G. (1971). Middle Westphalian strata in south-west Spain. In Compte Rendu 6º Congrès International de Stratigraphie et Gèologie du Carbonifère, Sheffield 1967, III (pp. 1275–1292).Google Scholar
  76. Ourisson, G., & Albrecht, P. (1992). Hopanoids. 1. Geohopanoids: The most abundant natural products on earth? Accounts of Chemical Research, 25, 398–402.CrossRefGoogle Scholar
  77. Peters, K., Walters, C., & Moldowan, J. (2005). The biomarker guide: Biomarkers and isotopes in petroleum systems and earth history. Cambridge: Cambridge University Press.Google Scholar
  78. Petersen, H. I., & Rosenberg, P. (1998). Reflectance retardation (suppression) and source rock properties related to hydrogen-enriched vitrinite in Middle Jurassic coals, Danish North Sea. Journal of Petroleum Geology, 21, 247–263.CrossRefGoogle Scholar
  79. Piovano, E., Ross, R., Guevara, R., Arribére, M., & Depetris, P. (1999). Geochemical tracers of source rocks in a Cretaceous to Quaternary sedimentary sequence (Eastern Sierras Pampeanas, Argentina). Journal of South American Earth Sciences, 12, 489–500.CrossRefGoogle Scholar
  80. Radke, M., Rullkötter, J., & Vriend, S. P. (1994). Distribution of naphthalenes in crude oils from the Java Sea: Source and maturation effects. Geochimica et Cosmochimica Acta, 58, 3675–3689.CrossRefGoogle Scholar
  81. Radke, M., Welte, D. H., & Willsch, H. (1982a). Geochemical study on a well in the Western Canada Basin: Relation of the aromatic distribution pattern to maturity of organic matter. Geochimica et Cosmochimica Acta, 46, 1–10.CrossRefGoogle Scholar
  82. Radke, M., Willsch, H., & Leythaeuser, D. (1982b). Aromatic components of coal: relation of distribution pattern to rank. Geochimica et Cosmochimica Acta, 46, 1831–1848.CrossRefGoogle Scholar
  83. Rimmer, S. M., & Davis, A. (1988). The influence of depositional environments on coal petrographic composition of the Lower Kittanning seam, western Pennsylvania. Organic Geochemistry, 12, 375–387.CrossRefGoogle Scholar
  84. Romero-Sarmiento, M. F., Riboulleau, A., Vecoli, M., Laggoun-Défarge, F., & Versteegh, G. J. M. (2011). Aliphatic and aromatic biomarkers from Carboniferous coal deposits at Dunbar (East Lothian, Scotland): Palaeobotanical and palaeoenvironmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 309, 309–326.CrossRefGoogle Scholar
  85. Shao, L., Jones, T., Gayer, R., Dai, S., Li, S., Jiang, Y., et al. (2003). Petrology and geochemistry of the high-sulfur coals from the Upper Permian carbonate coal measures in the Heshan Coalfield, southern China. International Journal of Coal Geology, 55, 1–26.CrossRefGoogle Scholar
  86. Spears, D. A., & Zheng, Y. (1999). Geochemisty and origin of elements in some UK coals. International Journal of Coal Geology, 38, 161–179.CrossRefGoogle Scholar
  87. Stach, E., Mackowsky, M Th, Teichmüller, M., Taylor, G. H., Chandra, D., & Teichmüller, R. (1982). Textbook of coal petrology (3rd ed.). Berlin: Gebruder Borntraeger.Google Scholar
  88. Stampfli, G. M., & Borel, G. D. (2002). A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth and Planetary Science Letters, 196, 17–33.CrossRefGoogle Scholar
  89. Stanton, R. W., & Finkelman, R. B. (1995). Coal quality. In A. Bisio & S. Boots (Eds.), The encyclopaedia of energy and the environment (pp. 684–691). New York: Wiley.Google Scholar
  90. Suárez-Ruiz, I., Flores, D., Marques, M. M., Martínez-Tarazona, M. R., Pis, J., & Rubiera, F. (2006). Geochemistry, mineralogy and technological properties of coals from Rio Maior (Portugal) and Peñarroya (Spain) basins. International Journal of Coal Geology, 67, 171–190.CrossRefGoogle Scholar
  91. Suárez-Ruiz, I., Iglesias, M. J., Jiménez, A., Laggoun-Defarge, F., & Prado, J. G. (1994). Influence of resinite on huminite properties. Energy and Fuels, 8, 1417–1424.CrossRefGoogle Scholar
  92. Suárez-Ruiz, I., & Jiménez, A. (2004). Coal facies studies in Spain. International Journal of Coal Geology, 58, 31–39.CrossRefGoogle Scholar
  93. Swaine, D. J. (1990). Trace elements in coal. London: Butterworth & Co., Publishing.Google Scholar
  94. Taylor, G. H., Liu, S. Y., & Diessel, C. F. K. (1989). The cold-climate origin of inertinite-rich Gondwana coals. International Journal of Coal Geology, 11, 1–22.CrossRefGoogle Scholar
  95. Teichmüller, M. (1987). Recent advances in coalification studies in their applications to geology. In A. C. Scott (Ed.), Coal and coal-bearing strata: Recent advances (pp. 127–170). Oxford: Geological Society Special Publication 32, Blackwell Scientific Publications.Google Scholar
  96. Tissot, B. P., & Welte, D. H. (1984). Petroleum formation and occurrence (2nd ed.). New York: Springer.CrossRefGoogle Scholar
  97. van Aarssen, B. G. K., & de Leeuw, J. W. (1992). High-molecular mass substances in resinites as possible precursors of specific hydrocarbons in fossil fuels. Organic Geochemistry, 19, 315–326.CrossRefGoogle Scholar
  98. Vassilev, S. V., Yossifova, M., & Vassileva, C. (1994). Mineralogy and geochemistry of Bobov Dol coals, Bulgaria. International Journal of Coal Geology, 26, 185–214.CrossRefGoogle Scholar
  99. Vliex, M., Hagemann, H. W., & Püttmann, W. (1994). Aromatized arborane/fernane hydrocarbons as molecular indicator of floral changes in Upper Carboniferous/Lower Permian strata of the Saar-Nahe Basin, South West Germany. Geochimica et Cosmochimica Acta, 58, 4689–4702.CrossRefGoogle Scholar
  100. Wagner, R. H. (1999). Peñarroya, a strike-slip controlled basin of early Westphalian age in Southwest Spain. Bulletin of the Czech Geological Survey, 74, 87–108.Google Scholar
  101. Wagner, R. H. (2004). The Iberian Massif: a Carboniferous assembly. Journal of Iberian Geology, 30, 93–108.Google Scholar
  102. Wagner, R. H. (2013). El significado geológico de las cuencas carboníferas con flora fósil en Sierra Morena. XXIX Jornadas de Paleontología. Simposio del proyecto PICG 596. Libro de resúmenes, 40–55.Google Scholar
  103. Wagner, R. H., & Álvarez-Vázquez, C. (2010). The Carboniferous floras of the Iberian Peninsula: A synthesis with geological connotations. Review of Palaeobotany and Palynology, 162, 239–324.CrossRefGoogle Scholar
  104. Ward, C. R. (1989). Minerals in bituminous coals of the Sydney basin (Australia) and the Illinois basin (USA). International Journal of Coal Geology, 13, 455–479.CrossRefGoogle Scholar
  105. Ward, C. R., Bocking, B., & Ruan, C. (2001). Mineralogical analysis of coals as an aid to seam correlation in the Gloucester Basin, New South Wales, Australia. International Journal of Coal Geology, 47, 31–49.CrossRefGoogle Scholar
  106. Ward, C. R., & Christie, P. J. (1994). Clays and other minerals in coal seams of the Moura-Baralaba area, Bowen Basin, Australia. International Journal of Coal Geology, 25, 287–309.CrossRefGoogle Scholar
  107. Ward, C. R., Corcoran, J. F., Saxby, J. D., & Read, H. W. (1996). Occurrence of phosphorus minerals in Australian coal seams. International Journal of Coal Geology, 31, 185–210.CrossRefGoogle Scholar
  108. Ward, C. R., Spears, D. A., Booth, C. A., Staton, J., & Gurba, L. W. (1999). Mineral matter and trace elements in coals of the Gunnedah Basin, New South Wales, Australia. International Journal of Coal Geology, 40, 281–308.CrossRefGoogle Scholar
  109. Wedepohl, K. H. (1978). Handbook of geochemistry (Vol. II). Berlin: Springer.Google Scholar
  110. Winston, R. B. (1986). Characteristic features and compaction of plant tissues traced from permineralized peat to coal in Pennsylvanian coals (Desmoinesian) from the Illinois Basin. International Journal of Coal Geology, 6, 21–41.CrossRefGoogle Scholar
  111. Winston, R. B. (1988). Paleoecology of Middle Pennsylvanian-age peat-swamp plants in Herrin coal, Kentucky, USA. International Journal of Coal Geology, 10, 203–238.CrossRefGoogle Scholar
  112. Yudovich, Y. E., & Ketris, M. P. (2006). Chlorine in coal: A review. International Journal of Coal Geology, 67, 127–144.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • E. Lorenzo
    • 1
  • A. G. Borrego
    • 2
  • G. Márquez
    • 3
  • F. González
    • 4
  • C. Moreno
    • 4
  1. 1.Facultad de IngenieríaUniversidad Estatal Península de Santa ElenaLa LibertadEcuador
  2. 2.Instituto Nacional del Carbón, INCAR-CSICOviedoSpain
  3. 3.Departamento de Ingeniería Minera, Mecánica y EnergéticaUniversidad de HuelvaHuelvaSpain
  4. 4.Departamento de GeologíaUniversidad de HuelvaHuelvaSpain

Personalised recommendations