Characterization of generalized absolute Cesàro summability factors


Recently, Sarıgöl (in: Kuwait J Sci 42(3):28–35, 2015) has investigated the summability factors of type \(\varepsilon \in \left( {\left| {C,\alpha } \right|_{k} ,\left| {\bar{N}, p_{n} } \right|} \right)\), for \(\alpha > - 1\), \(k > 1\) and arbitrary positive sequence \(\left( {p_{n} } \right)\), which extends some well known results. The aim of this paper is to generalize these results using more general summability \(\left| {C,\alpha ,\beta } \right|_{k}\), \(k \ge 1.\) More precisely, we give characterization of the summability factors of the types \(\left( {\left| {C,\alpha ,\beta } \right|_{k} ,\left| {\bar{N}, p_{n} } \right|} \right)\), \(k > 1\) and \(\left( {\left| {\bar{N}, p_{n} } \right|,\left| {C,\alpha ,\beta } \right|_{k} } \right) , k \ge 1\) for \(\alpha + \beta > - 1\) and a positive sequence \(\left( {p_{n} } \right)\).

This is a preview of subscription content, log in to check access.


  1. 1.

    Bor, H. 2016. Some equivalence theorems on absolute summability methods. Acta Mathematica Hungarica 149: 208–214.

    MathSciNet  Article  Google Scholar 

  2. 2.

    Bor, H., and B. Thorpe. 1987. On some absolute summability methods. Analysis 7 (2): 145–152.

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Bor, H. 1985. On two summability methods. Mathematical Proceedings of the Cambridge Philosophical Society 97: 147–149.

    MathSciNet  Article  Google Scholar 

  4. 4.

    Borwein, D. 1958. Theorems on some methods of summability. The Quarterly Journal of Mathematics 9: 310–316.

    MathSciNet  Article  Google Scholar 

  5. 5.

    Das, G. 1970. A Tauberian theorem for absolute summability. Mathematical Proceedings of the Cambridge Philosophical 67: 321–326.

    MathSciNet  Article  Google Scholar 

  6. 6.

    Flett, T.M. 1957. On an extension of absolute summability and some theorems of Littlewood and Paley. Proceedings of the London Mathematical Society 7: 113–141.

    MathSciNet  Article  Google Scholar 

  7. 7.

    Hazar Güleç, G.C. 2019. Summability factor relations between absolute weighted and Cesàro means. Mathematical Methods in the Applied Sciences 42: 5398–5402.

    MathSciNet  Article  Google Scholar 

  8. 8.

    Hazar Güleç, G.C., and M.A. Sarıgöl. 2019. On factor relations between weighted and Nörlund means. Tamkang Journal of Mathematics 50 (1): 61–69.

    MathSciNet  Article  Google Scholar 

  9. 9.

    Hazar, G.C., and M.A. Sarıgöl. 2018. Absolute Cesàro series spaces and matrix operators. Acta Applicandae Mathematicae 154: 153–165.

    MathSciNet  Article  Google Scholar 

  10. 10.

    Hazar Güleç, G.C., and M.A. Sarıgöl. 2018. Compact and matrix operators on the space |C, −1|k. Journal of Computational Analysis and Applications 25 (6): 1014–1024.

    MathSciNet  Google Scholar 

  11. 11.

    Maddox, I.J. 1970. Elements of functional analysis. London: Cambridge University Press.

    Google Scholar 

  12. 12.

    Mazhar, S.M. 1971. On the absolute summability factors of infinite series. Tohoku Mathematical Journal 23: 433–451.

    MathSciNet  Article  Google Scholar 

  13. 13.

    Mehdi, M.R. 1960. Summability factors for generalized absolute summability I. Proceedings of the London Mathematical Society 10 (3): 180–199.

    MathSciNet  Article  Google Scholar 

  14. 14.

    Mohapatra, R.N. 1968. On absolute Riesz summability factors. The Journal of the Indian Mathematical Society 32: 113–129.

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Orhan, C., and M.A. Sarıgöl. 1993. On absolute weighted mean summability. Rocky Mountain Journal of Mathematics 23: 1091–1097.

    MathSciNet  Article  Google Scholar 

  16. 16.

    Sarıgöl, M.A. 2016. Spaces of series summable by absolute Cesàro and matrix operators. Communications in Mathematics and Applications 7 (1): 11–22.

    Google Scholar 

  17. 17.

    Sarıgöl, M.A. 2015. Extension of Mazhar’s theorem on summability factors. Kuwait Journal of Science 42 (3): 28–35.

    MathSciNet  Google Scholar 

  18. 18.

    Sarıgöl, M.A. 2010. On the local properties of factored Fourier series. Applied Mathematics and Computation 216: 3386–3390.

    MathSciNet  Article  Google Scholar 

  19. 19.

    Sulaiman, W.T. 1992. On summability factors of infinite series. Proceedings of the American Mathematical Society 115: 313–317.

    MathSciNet  Article  Google Scholar 

  20. 20.

    Sulaiman, W.T. 2011. On some absolute summability factors of infinite series. General Mathematics Notes 2: 7–13.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to G. Canan Hazar Güleç.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

There was no research involving human participants and/or animals.

Informed consent

For this type of study informed consent was not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hazar Güleç, G.C. Characterization of generalized absolute Cesàro summability factors. J Anal (2020).

Download citation


  • Generalized absolute Cesàro summability
  • Summability factors
  • Inclusion relations

Mathematics Subject Classification

  • 40C05
  • 40D25
  • 40F05
  • 46A45