Inequalities for the polar derivative of a polynomial


Let P(z) be a polynomial of degree n having all its zeros in \(|z|\le 1\), then according to Turan (Compositio Mathematica 7:89–95, 2004)

$$\begin{aligned} \max \limits _{|Z|=1}|P'(z)|\ge \frac{n}{2}\max \limits _{|Z|=1}|P(z)|. \end{aligned}$$

In this paper, we shall use polar derivative and establish a generalisation and an extension of this result. Our results also generalize variety of other results.

This is a preview of subscription content, log in to check access.


  1. 1.

    Aziz, A. 1988. Inequalities for the polar derivative of a polynomial. Journal of Approximation Theory 55: 183–193.

    MathSciNet  Article  Google Scholar 

  2. 2.

    Aziz, A., and N.A. Rather. 2003. Inequalities for the polar derivative of a polynomial with restricted zeros. Math Bulk 17: 15–28.

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Aziz, A., and W.M. Shah. 1998. Inequalities for the polar derivative of a polynomial. Indian Journal of Pure and Applied Mathematics 29: 163–173.

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Bernstein, S. 1930. Sur la limitation des derivees des polnomes. Comptes Rendus de l’Académie des Sciences 190: 338–341.

    MATH  Google Scholar 

  5. 5.

    Dubinin, V.N. 2000. Distortion theorems for polynomials on the circle. Matematicheskii Sbornik 191 (12): 1797–1807.

    MathSciNet  Article  Google Scholar 

  6. 6.

    Lax, P.D. 1994. Proof of a conjecture of P. Erdös on the derivative of a polynomial. American Mathematical Society 50 (8): 509–513.

    MATH  Google Scholar 

  7. 7.

    Shah, W.M. 1996. A generalization of a theorem of P. Turan. Journal of the Ramanujan Mathematical Society 1: 29–35.

    MathSciNet  Google Scholar 

  8. 8.

    Turan, P. 1939. Über die ableitung von polynomem. Compositio Mathematica 7: 89–95.

    MathSciNet  MATH  Google Scholar 

Download references


This work was supported by NBHM, India, under the research project number 02011/36/2017/R&D-II.

Author information



Corresponding author

Correspondence to M. H. Gulzar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gulzar, M.H., Zargar, B.A. & Akhter, R. Inequalities for the polar derivative of a polynomial. J Anal 28, 923–929 (2020).

Download citation


  • Polynomial
  • Polar derivative
  • Inequalities

Mathematics Subject Classification

  • 30A10
  • 30C15