Skip to main content
Log in

Reducible means

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

A n variables mean M is said to be reducible in a certain class of means \(\mathcal {N}\) when M can be represented as a composition of a finite number \(M_{0},\ldots ,M_{r}\) of means belonging to \(\mathcal {N}\), being less than n the number of variables of every \(M_{i}\). In this paper, a basic classification of reducible means is developed and the notions of S-reducibility, a type of analytically decidible reducibility, and of complete reducibility of a mean are isolated. Several applications of these notions are presented. In particular, a continuous and scale invariant weighting procedure defined on a class \(\mathcal {M}_{2}\) of two variables means is extended without losing its properties to the class of reducible means in \(\mathcal {M}_{2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aumann, G. 1935. Aufbau von Mittelwerten mehrerer Argumente II (Analytische Mittelwerte). Mathematische Annalen 111: 713–730.

    Article  MathSciNet  Google Scholar 

  2. Arnold, V.I. 1957. On functions of three variables. Doklady Akademii Nauk SSSR 114 (1957): 679–681. (English transl., Amer. Math. Soc. Transl. (2) 38 (1963), 51–54.).

    MathSciNet  Google Scholar 

  3. Arnold, V.I. 1962. On the representation of continuous functions of three variables by superpositions of continuous functions of two variables. Matematicheskii Sbornik 48 (90): 1. ((1959) 3-74 Corrections in Mat. Sb. (n.S.) 56 (98):3 (1962), 392; English transl., Amer. Math. Soc. Transl. (2) 28 (1963), 61–147).

    MathSciNet  Google Scholar 

  4. Arnold, V.I. 2014. From Hilbert’s superposition problem to dynamical systems. In Arnold: swimming against the tide, ed. B.A. Khesin, and S.L. Tabachnikov, 11–29. Providence: AMS.

    Chapter  Google Scholar 

  5. Berge, C. 2001. The theory of graphs. Mineola: Dover.

    MATH  Google Scholar 

  6. Berrone, L.R. 2015. The Aumann functional equation for general weighting procedures. Aequationes Mathematicae 89 (4): 1051–1073. https://doi.org/10.1007/s00010-015-0344-4.

    Article  MathSciNet  MATH  Google Scholar 

  7. Berrone, L.R. 2017. Weighting by iteration: the case of Ryll-Nardzewski’s iterations. Results in Mathematics 71 (3): 535–567. https://doi.org/10.1007/s00025-016-0586-z.

    Article  MathSciNet  MATH  Google Scholar 

  8. Berrone, L.R., and G.E. Sbérgamo. 2017. Acz éls iterations for discontinuous or non strict means. Journal of Analysis 25 (1): 1–27. https://doi.org/10.1007/s41478-016-0008-3.

    Article  MathSciNet  MATH  Google Scholar 

  9. Bondy, J. A., and U. S. R. Murty. 2008. Graph Theory. Graduate Text in Math., vol. 244. London: Springer.

  10. Brattka, V. 2007. From Hilbert’s 13th problem to the theory of neural networks: constructive aspects of Kolmogorov’s superposition theorem. In Kolmogorov’s heritage in mathematics, ed. E. Charpentier, A. Lesne, and N. Nikolski, 253–280. Berlin: Springer.

    Chapter  Google Scholar 

  11. Bullen, P.S. 2003. Handbook of Means and Their Inequalities. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  12. Dhombres, J.G. 1984. Some recent applications of functional equations. In Functional equations: history, applications and theory, ed. J. Aczél, 67–91. Dordrecht: D. Reidel.

    Chapter  Google Scholar 

  13. Horwitz, A. 2002. Invariant means. Journal of Mathematical Analysis and Applications 270: 499–518.

    Article  MathSciNet  Google Scholar 

  14. Ya, S. 1997. Khavinson, best approximations by linear superpositions (approximate nomographie), translations of mathematical monographs. Providence: AMS.

    Google Scholar 

  15. Kiss, T., and Z. Páles. 2017. Reducible means and reducible inequalities. Aequationes Mathematicae 91 (3): 505–525. https://doi.org/10.1007/s00010-016-0459-2.

    Article  MathSciNet  MATH  Google Scholar 

  16. Knuth, D.E. 1997. The art of computer programming, vol. 1, fundamental algorithms, 3rd ed. Reading: Addison Wesley.

    MATH  Google Scholar 

  17. Kolmogorov, A. 1956. The representation of continuous functions of several variables by superpositions of continuous functions of a smaller number of variables. Doklady Akademii Nauk SSSR 108 (2): 179–182.

    MathSciNet  MATH  Google Scholar 

  18. Kolmogorov, A. 1957. The representation of continuous functions of many variables by superposition of continuous functions of one variable and addition. Doklady Akademii Nauk SSSR 114: 953–956.

    MathSciNet  MATH  Google Scholar 

  19. Krantz, S.G., and H.R. Parks. 2003. The implicit function theorem. History, theory and applications. Boston: Birkhäuser.

    Book  Google Scholar 

  20. Lorentz, G.G. 1966. Approximation of functions. New York: Holt, Rinehart and Winston.

    MATH  Google Scholar 

  21. Matkowski, J. 2003/2004. Convex functions with respect to a mean and a characterization of quasi-arithmetic means.Real Analysis Exchange 29(1): 229-246.

  22. Pólya, G., and Szegö, G. 1970. Problems and theorems in analysis I, Springer, Berlin (1972. Revised and enlarged translation of “Aufgaben und Lehrsatze aus der Analysis I”, 4th ed., Heidelberger Taschenbticher, Band 73).

  23. Sbérgamo, G. E. Ponderaciones de medias de 3 variables (unpublished manuscript).

  24. Vitushkin, A. G. 1978. On representation of functions by means of superpositions and related topics: lectures, Monographie de l’Enseignement Mathématique, Université, L’Enseignement Mathématique.

Download references

Acknowledgements

The author expresses his appreciation to the anonymous Referee whose criticism helped to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucio R. Berrone.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

To facilitate the reading of the paper, a table of the main notations employed is given below.

\(\mathbb {R}^{+}\) :

Set of positive real numbers

I :

Real interval

\(w^{T}\) :

Transpose of w

\(\mathcal {\preceq }\) :

Product order in \(I^{n}\)

\(\nu \left( F\right)\) :

Number of effective arguments of the function F

\(S_{n}\) :

Symmetric group of order n

\(X_{k}\left( x_{1},\ldots ,x_{n}\right) \equiv x_{i},\ k=1,\ldots ,n\),:

Coordinate means

\(X_{n}^{( k) },\)\(k=1,\ldots ,n\),:

Order means

\(\min _{n},\ \max _{n}\) :

n variables extremal means

\(A_{n}\) :

n variables arithmetic mean

\(G_{n}\) :

n variables geometric mean

\(L_{n}\) [\(L_{n,\left( w_{1},\ldots ,w_{n}\right) }\)]:

n variables linear mean, [with weights \(\left( w_{1},\ldots ,w_{n}\right)\)]

\(G_{n}\)[\(G_{n,\left( w_{1},\ldots ,w_{n}\right) }\):

n variables geometric mean [with weights \(\left( w_{1},\ldots ,w_{n}\right)\)]

\(QL_{n}\) [\(QL_{n.\left( w_{1},\ldots ,w_{n}\right) }\):

n variables quasilinear mean [with weights \(\left( w_{1},\ldots ,w_{n}\right)\)]

\(FH_{n}\left( x_{1},\ldots ,x_{n}\right)\) :

The n variables mean defined by \(\left( \sum \nolimits _{i=1}^{n}f_{i}\left( x_{i}\right) x_{i}\right) /\sum \nolimits _{i=1}^{n}f_{i}\left( x_{i}\right)\)

\(CH_{n}^{( r) }\qquad r\)th:

Weighted n variables counter-harmonic mean

\(e_{n}^{[ r] }\left( x_{1},\ldots ,x_{n}\right)\) :

The rth symmetric polynomial function

\(\mathfrak {S}_{n}^{[ r] }\left( x_{1},\ldots ,x_{n}\right)\) :

The rth symmetric polynomial mean

\(P_{\alpha }^{( r) }\) :

The (two variables) weighted power mean with exponent r and weight \(\alpha\)

\(\mathcal {M}( i) ,\,\mathcal {N}( i)\) :

General classes of means defined on I

\(\left( \mathcal {M}\right) _{f}\left( f( i) \right)\) :

The class of means \(\left\{ \left( M_{f}\right) :M\in \mathcal {M}( i) \right\}\)

\(\mathcal {C}^{( k) }\mathcal {M}_{n}( i)\) :

The class of n variables \(\mathcal {C}^{( k) }\) means defined on I

\(\mathcal {LM}( i)\) :

The class of linear means defined on I

\(\mathcal {LM}_{\mathbb {Q}}\left( \mathbb {R}\right)\) :

The class of linear means with a rational weight vector

\(\mathcal {QLM}( i)\) :

The class of quasilinear means defined on I

\(\mathcal {QLM}_{2,\mathbb {Q}}\left( \mathbb {R}^{+}\right)\) :

The class of two variables quasilinear means with rational weights defined on \(\mathbb { R}^{+}\)

\(\mathfrak {S}\mathcal {M}\left( \mathbb {R}^{+}\right)\) :

The class of polynomial symmetric means

\(\left( M\right) _{f}\) :

The mean conjugate of M by the homeomorphism f

\(\overline{M}\) :

Two variables mean complementary of M

\(\mathbf {n}\) :

The set (of indices) \(\left\{ 1,\ldots ,n\right\}\)

J :

a subset of \(\mathbf {n}\)

[J]:

The increasingly ordered set of indices corresponding to \(J\subseteq \mathbf{n}\)

\(\left( x_{j}\right) _{\left[ J\right] }\) :

The k-tuple \(( x_{i_{1}},\ldots ,x_{i_{k}})\) with \(\left[ i_{1},\ldots ,i_{k}\right] =\left[ J\right]\) (\(J=\left\{ i_{1},\ldots ,i_{k}\right\} \subseteq \mathbf { n}\))

\(M_{[ i_{1},\ldots ,i_{k}] }\left( x_{i_{1}},\ldots ,x_{i_{k}};u\right)\) :

The specialization of variables of M obtained by setting \(x_{j}=u,\ j\notin \left\{ i_{1},\ldots ,i_{k}\right\}\)

\(M_{J}\left( \left( x_{j}\right) _{\left[ \varvec{n}\setminus J\right] };u\right)\) :

The specialization of variables of M obtained by setting \(x_{j}=u,\ j\in J\)

\(M_{J_{1}\cdots J_{r}}\left( \left( x_{j}\right) _{\left[ n\setminus \cup _{i}J_{i}\right] };u_{1},\ldots ,u_{r}\right)\) :

The specialization of variables of M obtained by setting \(x_{j}=u_{i},\ j\in J_{i},\ i=1,\ldots ,r\)

\(\mu _{[ i_{1},\ldots ,i_{k}] }\qquad \left[ i_{1},\ldots ,i_{k} \right]\) :

-lower mean of a mean M

\(\mathcal {FS}( \mathfrak {F})\) :

The set of functional symbols in a formula \(\mathfrak {F}\)

\(\mathcal {VAR}( \mathfrak {F})\) :

The set of variables in a formula \(\mathfrak {F}\)

\(T( \mathfrak {F})\) :

The tree of the formula F

\(V\left( G\right)\) :

Set of vertices of a graph G

\(\hbox {v}\,\left( T\right)\) :

Order (number of vertices) of a tree T

\(\hbox {a}\,\left( T\right)\) :

Size (number of arcs) of a tree T

\(\hbox {root} \; \left( T\right)\) :

Root vertex of a tree T

\(\hbox {nl}\,\left( T\right)\) :

The number of leaves of a tree T

\(\hbox {h}\,\left( T\right)\) :

The height of a tree T (the length of the longest path joining the root with a leaf)

\(\hbox {des}\left( v\right)\) :

The descent of a vertex \(v\in V\left( T\right)\) (the number of subtrees of v)

\(\mathcal {W}:\mathcal {M}_{n}(i) \times \Delta _{n-1}\rightarrow \mathcal {N}( i)\) :

Weighting procedure defined on the class of n variables means \(\mathcal {M}_{n}( i)\)

\(\mathcal {A}\left( M;I\right)\) :

The family of M-affine functions

\(\mathcal {BA}\left( M;I\right)\) :

The family of bijective M-affine functions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berrone, L.R. Reducible means. J Anal 27, 943–984 (2019). https://doi.org/10.1007/s41478-018-0156-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-018-0156-8

Keywords

Mathematics Subject Classification

Navigation