Activitas Nervosa Superior

, Volume 60, Issue 1, pp 21–26 | Cite as

Action Changes the Brain, and the Brain Does Not Define Action: a Lesson from Neuroscience on Certain Biases in the Clinical Context

  • Antonio IudiciEmail author
  • Giovanni Iacovello
  • Elena Faccio
Original Article


Although neuroscientific findings have significantly increased knowledge in the clinical field, the field literature has highlighted some limitations that the use of these findings involves. In particular, we found biases that lead clinical practitioners to reify or unduly consider neuroscientific data because of psychological or psychiatric aspects. This literature review aimed to highlight neuroscientific studies that specified significant brain changes that may occur in humans. Starting with Prisma procedures, we conducted a review of the literature using the following databases: Scopus, Medline, PubMed, and Google Scholar. The results were grouped according to data underlining the considerable neuronal plasticity and synaptogenesis that occur in humans. In particular, the data found related to the following categories: learning and changes in the somatosensory and motor cortices; cross-modal plasticity in individuals who have lost one sensory modality; further cases of training-dependent plasticity; neuromuscular junction plasticity; synaptogenesis, synaptic modulation, and long-term potentiation; receptor adaptation involving adaptive-cellular tolerance or pharmacodynamics and experience; placebo, cognition-dependent physiological activity and endogenous pharmacotherapy; and significance-dependent physiological modulation and adaptive coping. As a result, the clinical need to counteract the idea of a passive subject who is controlled by his/her brain to ensure more accurate care of his/her health was identified. Clinical practitioners can foster this process by reducing biases and by adopting an approach based on the circularity of interdisciplinary interactions rather than on reductionism and oversimplification.


Clinical Bias Neuroscience Neuronal plasticity Synaptogenesis Brain 


  1. Araneda, R., Renier, L. A., Rambaux, P., Cuevas, I., & De Volder, A. G. (2016). Cortical plasticity and olfactory function in early blindness. Frontiers in Systems Neuroscience, 10, 75.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bailey, C. H., Kandel, E. R., & Harris, K. M. (2015). Structural components of synaptic plasticity and memory consolidation. Cold Spring Harbor Perspectives in Biology, 7, a021758.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bartsch, D., Ghirardi, M., Skehel, P. A., Karl, K. A., Herder, S. P., Chen, M., Bailey, C. H., & Kandel, E. R. (1995). Aplysia CREB2 represses long-term facilitation: relief of repression converts transient facilitation into long-term functional and structural change. Cell, 83(6), 979–992.CrossRefPubMedGoogle Scholar
  4. Bezzola, L., Mérillat, S., Gaser, C., & Jäncke, L. (2011). Training-induced neural plasticity in golf novices. The Journal of Neuroscience, 31(35), 12444–12448.CrossRefPubMedGoogle Scholar
  5. Bola, Ł., Zimmermann, M., Mostowski, P., Jednoróg, K., Marchewka, A., Rutkowski, P., & Szwed, M. (2017). Task-specific reorganization of the auditory cortex in deaf humans. Proceedings of the National Academy of Sciences of the United States of America, 114(4), E600–E609.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Buonomano, D. V., & Merzenich, M. M. (1998). Cortical plasticity: from synapses to maps. Annual Review of Neuroscience, 21, 149–186.CrossRefPubMedGoogle Scholar
  7. Campos, J. J., & Johnson, J. J. (1967). Affect, verbalization and directional fractionation of autonomic responses. Psychophysiology, 3(3), 285–290.CrossRefPubMedGoogle Scholar
  8. Cecchetti, L., Kupers, R., Ptito, M., Pietrini, P., & Ricciardi, E. (2016). Are supramodality and cross-modal plasticity the yin and yang of brain development? From blindness to rehabilitation. Frontiers in Systems Neuroscience., 10(89), 8.Google Scholar
  9. Corbin, J., Strauss, A. (2008) Basics of qualitative research: techniques and procedures for developing grounded theory. Thousand Oaks.Google Scholar
  10. Creswell, J. W. (2014). Research design: qualitative, quantitative, and mixed methods approaches. Thousand Oaks, CA: Sage.Google Scholar
  11. Cutuli, D. (2014). Cognitive reappraisal and expressive suppression strategies role in the emotion regulation: an overview on their modulatory effects and neural correlates. Frontiers in Systems Neuroscience, 8, 175.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Damasio, A.R. (1994) Descartes’ Error. Emotion, reason, and the human Brain. Putnam Publishing.Google Scholar
  13. Denzin, N. K., & Lincoln, Y. S. (2015). Strategies of qualitative inquiry. Thousand Oaks, CA: Sage.Google Scholar
  14. Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science, 270(5234), 305–307.CrossRefPubMedGoogle Scholar
  15. Favero, M., Buffelli, M., Cangiano, A., & Busetto, G. (2010). The timing of impulse activity shapes the process of synaptic competition at the neuromuscular junction. Neuroscience, 167(2), 343–353.CrossRefPubMedGoogle Scholar
  16. Favero, M., Cangiano, A., & Busetto, G. (2015). Lesson from the neuromuscular junction: role of pattern and timing of nerve activity in synaptic development. Neural Regeneration Research, 10(5), 686–688.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Flick, U. (2009). An introduction to qualitative methods. London: Sage Publications.Google Scholar
  18. Frasnelli, J., Collignon, O., Voss, P., & Lepore, F. (2011). Crossmodal plasticity in sensory loss. Progress in Brain Research, 191, 233–249.CrossRefPubMedGoogle Scholar
  19. Hare, R. D. (1972). Response requirements and directional fractionation of autonomic response. Psychophysiology, 9(4), 419–427.CrossRefPubMedGoogle Scholar
  20. Heinz, A., Beck, A., Grüsser, S. M., Grace, A. A., & Wrase, J. (2009). Identifying the neural circuitry of alcohol craving and relapse vulnerability. Addiction Biology, 14(1), 108–118.CrossRefPubMedGoogle Scholar
  21. Hölzel, B. K., Carmody, J., Evans, K. C., Hoge, E. A., Dusek, J. A., Morgan, L., Pitman, R. K., & Lazar, S. W. (2010). Stress reduction correlates with structural changes in the amygdala. Social Cognitive and Affective Neuroscience, 5(1), 11–17.CrossRefPubMedGoogle Scholar
  22. Iudici, A. & Renzi, C. (2015). The configuration of job placement for people with disabilities in the current economic contingencies in Italy: Social and clinical implications for health. Disability and Health Journal, 8(4), 586–593.
  23. Iudici, A., Salvini, A., Faccio, E., Castelnuovo, G. (2015). The clinical assessment in the legal field: An empirical study of bias and limitations in forensic expertise. Frontiers in Psychology, 6, 1831.Google Scholar
  24. Jacob, F., & Monod, J. (1961). Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology, 3, 318–356.CrossRefPubMedGoogle Scholar
  25. Julien, R. M., Advokat, C. D., & Comaty, J. E. (2011). A primer of drug action 12th edition. New York: Worth Publishers.Google Scholar
  26. Kandel, E. R (2010). In Search of memory. The emergency of a new science of mind, W.W. Norton & Company, Inc, tr. it. Alla ricerca della memoria. La storia di una nuova scienza della mente. Ed. Codice, Torino.Google Scholar
  27. Kessels, H. W., & Malinow, R. (2009). Synaptic AMPA receptor plasticity and behavior. Neuron, 61(3), 340–350.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lazarus, R.S (1966). Psychological stress and the coping process. Ed. McGraw-Hill, New York.Google Scholar
  29. Legrenzi, P., Umiltà C. (2009). Neuro-mania. Il cervello non spiega chi siamo. Ed. Il Mulino, Bologna.Google Scholar
  30. Levine, J. D., Gordon, N. C., & Fields, H. L. (1978). The mechanism of placebo analgesia. Lancet, 2(8091), 654–657.CrossRefPubMedGoogle Scholar
  31. Mahler, D. A., Cunningham, L. N., Skrinar, G. S., Kraemer, W. J., & Colice, G. L. (1989). Beta-endorphin activity andhypercapnicventilatory responsiveness after marathon running. Journal of Applied Physiology, 66(5), 2431–2436.CrossRefPubMedGoogle Scholar
  32. Mathen, J. (2011). On the inherent incompleteness of scientific theories. Activitas Nervosa Superior, 53(1-2), 44–100.Google Scholar
  33. McLoughlin, K. A., & Geller, J. L. (2010). Interdisciplinary treatment planning in inpatientsettings: from myth to model. Psychiatric Quarterly, 81(3), 263–277.CrossRefPubMedGoogle Scholar
  34. Matsuzaki, M., Honkura, N., Ellis-Davies, G. C., & Kasai, H. (2004). Structural basis of long-term potentiation in single dendritic spines. Nature, 429, 761–766.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Monticelli, G. (2009) Fisiologia. Ed. Ambrosiana, Milano.Google Scholar
  36. O’Dea, L. (2010). Consciousness and the Problem of Other Minds. Activitas Nervosa Superior, 52(3–4), 105–112.
  37. Pancheri, P. (1980) Stress, emozioni, malattia. Introduzione alla medicina psicosomatica. Ed. Arnoldo Mondadori, Milano.Google Scholar
  38. Ptito, M., Moesgaard, S. M., Gjedde, A., & Kupers, R. (2005). Cross-modal plasticity revealed by electrotactile stimulation of the tongue in the congenitally blind. Brain, 128(Pt 3), 606–614.CrossRefPubMedGoogle Scholar
  39. Sadato, N., Pascual Leone, A., Grafman, J., Ibanez, V., Dalber, M. P., Dold, G., & Hallett, M. (1996). Activation of the primary visual cortex by Braille reading in blind subjects. Nature, 380, 526–528.CrossRefPubMedGoogle Scholar
  40. Salvini A. (2002) La Tossicofilia, in Salvini A., Testoni, I., Zamperini, A. Droghe. Tossicofilie e tossicodipendenza, Utet, Torino.Google Scholar
  41. Salvini, A. (2016). Realtà extra corticali e neuro immagini. Scienze dell’interazione, 1-2, 3–7.Google Scholar
  42. Schachter, S., & Singer, J. E. (1962). Cognitive, social and physiological determinants of emotional state. Psychological Review, 69, 379–399.CrossRefPubMedGoogle Scholar
  43. Schnell, E., Sizemore, M., Karimzadegan, S., Chen, L., Bredt, D. S., & Nicoll, R. A. (2002). Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number. Proceedings of the National Academy of Sciences of the United States of America, 99(21), 13902–13907.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Scholtz, J., Klein, M. C., Behrens, T. E. J., & Johansen-Berg, H. (2009). Training induces changes in white matter architecture. Nature Neuroscience, 12(11), 1370–1371.CrossRefGoogle Scholar
  45. Sinaei, M., & Kargarfard, M. (2015). The evaluation of BMI and serum beta-endorphin levels: the study of acute exercise intervention. The Journal of Sports Medicine and Physical Fitness, 55(5), 488–494.PubMedGoogle Scholar
  46. Stratford, A., et al. (2016). Embedding a recovery orientation into neuroscience research: involving people with a lived experience in research activity. Psychiatric Quarterly, 87(1), 75–88.CrossRefPubMedGoogle Scholar
  47. Taubert, M., Draganski, B., Anwander, A., Müller, K., Horstmann, A., Villringer, A., & Ragert, P. (2010). Dynamic properties of human brain structure: learning-related changes in cortical areas and associated fiber connections. The Journal of Neuroscience, 30(35), 11670–11677.CrossRefPubMedGoogle Scholar
  48. Takeuchi, H., Sekiguchi, A., Taki, Y., Yokoyama, S., Yomogida, Y., & Komuro, N. (2010). Training of working memory impacts structural connectivity. The Journal of Neuroscience, 30(9), 3297–3303.CrossRefPubMedGoogle Scholar
  49. Van Cutsem, M., Duchateau, J., & Hainaut, K. (1998). Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. The Journal of Physiology, 513(1), 295–305.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Yadav, R. K., Magan, D., Mehta, N., Sharma, R., & Mahapatra, S. C. (2012). Efficacy of a short-term yoga-based lifestyle intervention in reducing stress and inflammation: preliminary results. Journal of Alternative and Complementary Medicine, 18(7), 662–667.CrossRefPubMedGoogle Scholar
  51. Woollett, K., & Maguire, E. (2011). Acquiring “the Knowledge” of London’s layout drives structural brain changes. Current Biology, 21(24), 2109–2114.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Zubieta, J. K., Bueller, J. A., Jackson, L. R., Scott, D. J., Xu, Y., Koeppe, R. A., Nichols, T. E., & Stohler, C. S. (2005). Placebo effects mediated by endogenous opioid activity on mu-opioid receptors. Journal of Neuroscience, 25, 7754–7762.CrossRefPubMedGoogle Scholar
  53. Zubieta, J. K., & Stohler, C. S. (2009). Neurobiological mechanisms of placebo responses. Annals of the New York Academy of Sciences, 1156, 198–210.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Antonio Iudici
    • 1
    Email author
  • Giovanni Iacovello
    • 1
  • Elena Faccio
    • 1
  1. 1.University of Padova, Department of Philosophy, Sociology, Education and Applied PsychologyPadovaItaly

Personalised recommendations