Skip to main content
Log in

Optimal Allocation of Flexible AC Transmission System Controllers in Electric Power Networks

  • Review Article
  • Published:
INAE Letters Aims and scope Submit manuscript

Abstract

Due to increasing power demand, incorporation of prosumers, continuous expansion, competitive market and inherent limitations of alternating current, the management and operation of power system has become very complex. For economical, reliable and secure operation, the use of emerging technologies is unavoidable. Flexible AC transmission system (FACTS) is one of the emerging technologies which does not only solve the problems but also gives new directions in existing high voltage AC (HVAC) and high voltage DC (HVDC) power systems. However, allocation of FACTS controllers i.e., determination of optimal location, size, number and type of these devices with minimized cost is a difficult problem. This paper, in broader sense, discusses FACTS allocation for the solution of issues of power system. The benefits and objectives of optimal allocation of FACTS have been reviewed from view point of objective functions, decision variables, constraints and recent optimization algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdelaziz A, El-Sharkawy M, Attia M (2011) Optimal location of thyristor-controlled series compensators in power systems for increasing loadability by genetic algorithm. Electr Power Compon Syst 39(13):1373–1387

    Article  Google Scholar 

  • Acharya N, Sode-Yome A, Mithulananthan N (2005) Facts about flexible AC transmission systems (FACTS) controllers: practical installations and benefits. In: Australasian universities power engineering conference (AUPEC), Australia

  • Aghaei J et al (2016) Determining potential stability enhancements of flexible AC transmission system devices using corrected transient energy function. IET Gener Transm Distrib 10(2):470–476

    Article  MathSciNet  Google Scholar 

  • Ahmad S et al (2014a) A placement method of fuzzy based unified power flow controller to enhance voltage stability margin. In: Power electronics and applications (EPE’14-ECCE Europe), 2014 16th European conference on. IEEE

  • Ahmad S, Mekhilef S, Albatsh F (2014b) Voltage stability improvement by placing unified power flow controller (UPFC) at suitable location in power system network. In: Proceedings of Saudi Arabia smart grid conference (SASG), Saudi Arabia

  • Akumalla SS, Peddakotla S, Kuppa SRA (2016) A modified cuckoo search algorithm for improving voltage profile and to diminish power losses by locating multi-type FACTS devices. J Control Autom Electr Syst 27(1):93–104

    Article  Google Scholar 

  • Alabduljabbar A, Milanović J (2010) Assessment of techno-economic contribution of FACTS devices to power system operation. Electr Power Syst Res 80(10):1247–1255

    Article  Google Scholar 

  • Alonso M, Amaris H, Alvarez-Ortega C (2012) A multiobjective approach for reactive power planning in networks with wind power generation. Renew Energy 37(1):180–191

    Article  Google Scholar 

  • Amaris H, Alonso M (2011) Coordinated reactive power management in power networks with wind turbines and FACTS devices. Energy Convers Manag 52(7):2575–2586

    Article  Google Scholar 

  • Ara AL, Kazemi A, Niaki SN (2012) Multiobjective optimal location of FACTS shunt-series controllers for power system operation planning. IEEE Trans Power Deliv 27(2):481–490

    Article  Google Scholar 

  • Arabi S, Hamadanizadeh H, Fardanesh BB (2002) Convertible static compensator performance studies on the NY state transmission system. IEEE Trans Power Syst 17(3):701–706

    Article  Google Scholar 

  • Aziz T et al (2013) VAR planning with tuning of STATCOM in a DG integrated industrial system. IEEE Trans Power Deliv 28(2):875–885

    Article  Google Scholar 

  • Bahmani-Firouzi B, Azizipanah-Abarghooee R (2014) Optimal sizing of battery energy storage for micro-grid operation management using a new improved bat algorithm. Int J Electr Power Energy Syst 56:42–54

    Article  Google Scholar 

  • Balamurugan K, Muralisachithanandam R, Dharmalingam V (2015) Performance comparison of evolutionary programming and differential evolution approaches for social welfare maximization by placement of multi type FACTS devices in pool electricity market. Int J Electr Power Energy Syst 67:517–528

    Article  Google Scholar 

  • Baldwin N (2001) Edison: inventing the century. University of Chicago Press, Chicago

    Google Scholar 

  • Barrios-Martínez E, Ángeles-Camacho C (2017) Technical comparison of FACTS controllers in parallel connection. J Appl Res Technol 15(1):36–44

    Article  Google Scholar 

  • Bathina VR, Gundavarapu VNK (2014) Optimal location of thyristor-controlled series capacitor to enhance power transfer capability using firefly algorithm. Electr Power Compon Syst 42(14):1541–1553

    Article  Google Scholar 

  • Beaty HW (2006) Units, symbols, constants, definitions, and conversion factors. Standard handbook for electrical engineers. McGraw-Hill Professional, New York

    Google Scholar 

  • Bhattacharyya B, Gupta VK (2014) Fuzzy based evolutionary algorithm for reactive power optimization with FACTS devices. Int J Electr Power Energy Syst 61:39–47

    Article  Google Scholar 

  • Bhattacharyya B, Kumar S (2016) Loadability enhancement with FACTS devices using gravitational search algorithm. Int J Electr Power Energy Syst 78:470–479

    Article  Google Scholar 

  • Blaabjerg F, Chen Z, Kjaer SB (2004) Power electronics as efficient interface in dispersed power generation systems. IEEE Trans Power Electron 19(5):1184–1194

    Article  Google Scholar 

  • Cai L, Erlich I, Stamtsis G (2004) Optimal choice and allocation of FACTS devices in deregulated electricity market using genetic algorithms. In: Power systems conference and exposition, 2004. IEEE PES. IEEE

  • Canizares CA, Berizzi A, Marannino P (1998) Using FACTS controllers to maximize available transfer capability. In: Proceedings of bulk power systems dynamics and control IV—restructuring, pp 633–641

  • Carlson WB (2013) Tesla: inventor of the electrical age. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  • Carrasco JM et al (2006) Power-electronic systems for the grid integration of renewable energy sources: a survey. IEEE Trans Ind Electron 53(4):1002–1016

    Article  Google Scholar 

  • Chang Y-C (2012) Multi-objective optimal SVC installation for power system loading margin improvement. IEEE Trans Power Syst 27(2):984–992

    Article  Google Scholar 

  • Chatterjee D, Ghosh A (2007) Application of trajectory sensitivity for the evaluation of the effect of TCSC placement on transient stability. Int J Emerg Electr Power Syst 8(1)

  • Chaudhry FA et al (2016) Feasibility of Khanpur hydro electric power plant (a case study). Sci Int 28(2)

  • Chaudhry FA, Amin M, Iqbal M et al (2017) A novel chaotic differential evolution hybridized with quadratic programming for short-term hydrothermal coordination. Neural Comput Appl. https://doi.org/10.1007/s00521-017-2940-9

    Article  Google Scholar 

  • Chaudhuri B, Pal BC (2004) Robust damping of multiple swing modes employing global stabilizing signals with a TCSC. IEEE Trans Power Syst 19(1):499–506

    Article  MathSciNet  Google Scholar 

  • Chen W-N et al (2013) Particle swarm optimization with an aging leader and challengers. IEEE Trans Evol Comput 17(2):241–258

    Article  Google Scholar 

  • Cheney M (2011) Tesla: man out of time. Simon and Schuster, New York City

    Google Scholar 

  • Chindhi PS et al (2013) Review on various FACTS devices and optimal location techniques for FACTS devices in power system. Int Conf Adv Res Eng Technol 2:526–532

    Google Scholar 

  • Colak I et al (2016) A survey on the critical issues in smart grid technologies. Renew Sustain Energy Rev 54:396–405

    Article  Google Scholar 

  • De Oliveira E, Lima JM, De Almeida K (2000) Allocation of FACTS devices in hydrothermal systems. IEEE Trans Power Syst 15(1):276–282

    Article  Google Scholar 

  • de Souza LFW, Watanabe EH, da Rocha Alves JE Jr. (2008) Thyristor and gate-controlled series capacitors: a comparison of components rating. IEEE Trans Power Deliv 23(2):899–906

    Article  Google Scholar 

  • Dezaki HH et al (2013) A new method based on sensitivity analysis to optimize the placement of SSSCs. Turk J Electr Eng Comput Sci 21(Sup. 1):1956–1971

    Article  Google Scholar 

  • Dixit S et al (2014) An overview of placement of TCSC for enhancement of power system stability. In: Computational intelligence and communication networks (CICN), 2014 international conference on. IEEE

  • Doerksen J (2013) Design and implementation of a modular multilevel converter. University of Manitoba, Winnipeg

    Google Scholar 

  • Duan C et al (2016) FACTS devices allocation via sparse optimization. IEEE Trans Power Syst 31(2):1308–1319

    Article  Google Scholar 

  • Dubey R, Dixit S, Agnihotri G (2014) Optimal placement of shunt FACTs devices using heuristic optimization techniques: an overview. In: Communication systems and network technologies (CSNT), 2014 fourth international conference on. IEEE

  • Duong T, JianGang Y, Truong V (2014) Application of min cut algorithm for optimal location of FACTS devices considering system loadability and cost of installation. Int J Electr Power Energy Syst 63:979–987

    Article  Google Scholar 

  • Dutta S, Roy PK, Nandi D (2016a) Optimal location of STATCOM using chemical reaction optimization for reactive power dispatch problem. Ain Shams Eng J 7(1):233–247

    Article  Google Scholar 

  • Dutta S, Paul S, Roy PK (2016b) Optimal allocation of SVC and TCSC using quasi-oppositional chemical reaction optimization for solving multi-objective ORPD problem. J Electr Syst Inf Technol. https://doi.org/10.1016/j.jesit.2016.12.007

    Article  Google Scholar 

  • Edris A (1997) Proposed terms and definitions for flexible AC transmission system (FACTS). IEEE Trans Power Deliv 12(4)

  • Eslami M et al (2012) A survey on flexible AC transmission systems (FACTS). Organ 1:12

    Google Scholar 

  • Fang X et al (2012) Smart grid—the new and improved power grid: a survey. IEEE Commun Surv Tutor 14(4):944–980

    Article  Google Scholar 

  • Fardanesh B et al (2002) NYPA convertible static compensator validation of controls and steady state characteristics. CIGRE 14-103, France

  • Farhangi H (2010) The path of the smart grid. IEEE Power Energy Mag 8(1)

  • Faried SO, Billinton R, Aboreshaid S (2009) Probabilistic technique for sizing FACTS devices for steady-state voltage profile enhancement. IET Gener Transm Distrib 3(4):385–392

    Article  Google Scholar 

  • Farkoush SG et al (2016) Efficient Power factor improvement with SVC based on the PI controller under Load Fault in the smart grid. Int J Appl Eng Res 11(1):96–100

    Google Scholar 

  • Farsangi M, Song Y, Lee KY (2004) Choice of FACTS device control inputs for damping interarea oscillations. IEEE Trans Power Syst 19(2):1135–1143

    Article  Google Scholar 

  • Farsangi MM et al (2007) Placement of SVCs and selection of stabilizing signals in power systems. IEEE Trans Power Syst 22(3):1061–1071

    Article  Google Scholar 

  • Fujita H, Watanabe Y, Akagi H (1998) Control and analysis of a unified power flow controller. In: Power electronics specialists conference, 1998. PESC 98 record. 29th annual IEEE. IEEE

  • Galloway S et al (2010) Optimal flexible alternative current transmission system device allocation under system fluctuations due to demand and renewable generation. IET Gener Transm Distrib 4(6):725–735

    Article  Google Scholar 

  • Ganguly S (2014) Impact of unified power-quality conditioner allocation on line loading, losses, and voltage stability of radial distribution systems. IEEE Trans Power Deliv 29(4):1859–1867

    Article  Google Scholar 

  • Gavrilovic A et al (2003) Reactive power plant and FACTS controllers. Electrical engineer's reference book, 16th edn. Newnes, Oxford, pp 1–40

    Google Scholar 

  • Germond AJ (2002) Application of AI techniques to monitoring of transformers and optimal allocation of FACTS in power systems. In: Transmission and distribution conference and exhibition 2002: Asia Pacific. IEEE/PES. IEEE

  • Ghahremani E, Kamwa I (2013) Optimal placement of multiple-type FACTS devices to maximize power system loadability using a generic graphical user interface. IEEE Trans Power Syst 28(2):764–778

    Article  Google Scholar 

  • Gitizadeh M, Ghavidel S, Aghaei J (2014) Using SVC to economically improve transient stability in long transmission lines. IETE J Res 60(4):319–327

    Article  Google Scholar 

  • Glanzmann G (2005) FACTS: flexible alternating current transmission systems. ETH Zurich

  • Gopinath B, Kumar S (2016) Optimal location and sizing of unified power flow controller to improve the power system stability using hybrid method. J Comput Theor Nanosci 13(8):4971–4981

    Article  Google Scholar 

  • Grainger BM et al (2014) Power electronics for grid-scale energy storage. Proc IEEE 102(6):1000–1013

    Article  Google Scholar 

  • Habur K, O’Leary D (2004) FACTS-flexible alternating current transmission systems: for cost effective and reliable transmission of electrical energy. Siemens-World Bank document—final draft report, Erlangen

  • Halacli MG, Demiroren A (2016) Robust voltage/VAR control using PSO based STATCOM: a case study in Turkey. Electr Power Compon Syst 44(8):894–902

    Article  Google Scholar 

  • Hameed S, Das B, Pant V (2008) A self-tuning fuzzy PI controller for TCSC to improve power system stability. Electr Power Syst Res 78(10):1726–1735

    Article  Google Scholar 

  • Hammerstrom DJ (2007) AC versus DC distribution systems did we get it right? In: Power engineering society general meeting, 2007. IEEE

  • Helbing SG, Karady G (1994) Investigations of an advanced form of series compensation. IEEE Trans Power Deliv 9(2):939–947

    Article  Google Scholar 

  • Hingorani NG (1988) Power electronics in electric utilities: role of power electronics in future power systems. Proc IEEE 76(4):481–482

    Article  Google Scholar 

  • Hingorani NG (2007) FACTS technology-state of the art, current challenges and the future prospects. In: IEEE power engineering society general meeting

  • Hingorani NG, Gyugyi L, El-Hawary M (2000) Understanding FACTS: concepts and technology of flexible AC transmission systems, vol 2. Wiley Online Library, Hoboken

    Google Scholar 

  • Hooshmand RA, Ezatabadi M (2010) Corrective action planning considering FACTS allocation and optimal load shedding using bacterial foraging oriented by particle swarm optimization algorithm. Turk J Electr Eng Comput Sci 18(4):597–612

    Google Scholar 

  • Huang C-M, Huang Y-C (2014) Hybrid optimisation method for optimal power flow using flexible AC transmission system devices. IET Gener Transm Distrib 8(12):2036–2045

    Article  Google Scholar 

  • Isazadeh G, Khodabakhshian A, Gholipour E (2016) Optimal design of convertible static compensator supplementary damping controller to avoid wide area uncontrolled islanding. IET Gener Transm Distrib 10(10):2336–2350

    Article  Google Scholar 

  • Jain T, Singh S, Srivastava S (2009) Dynamic ATC enhancement through optimal placement of FACTS controllers. Electr Power Syst Res 79(11):1473–1482

    Article  Google Scholar 

  • Jamhoria S, Srivastava L (2014) Applications of thyristor controlled series compensator in power system: an overview. In: Power signals control and computations (EPSCICON), 2014 international conference on. IEEE

  • Javaheri H, Goldoost-Soloot R (2012) Locating and sizing of series facts devices using line outage sensitivity factors and harmony search algorithm. Energy Procedia 14:1445–1450

    Article  Google Scholar 

  • Jiang X et al (2010) Transfer path stability enhancement by voltage-sourced converter-based FACTS controllers. IEEE Trans Power Delivery 25(2):1019–1025

    Article  Google Scholar 

  • Jiang S et al (2011) Damping performance analysis of IPFC and UPFC controllers using validated small-signal models. IEEE Trans Power Deliv 26(1):446–454

    Article  Google Scholar 

  • Jirapong P, Ongsakul W (2007) Optimal placement of multi-type FACTS devices for total transfer capability enhancement using hybrid evolutionary algorithm. Electr Power Compon Syst 35(9):981–1005

    Article  Google Scholar 

  • Jordehi AR (2015a) Particle swarm optimisation (PSO) for allocation of FACTS devices in electric transmission systems: a review. Renew Sustain Energy Rev 52:1260–1267

    Article  Google Scholar 

  • Jordehi AR (2015b) Optimal setting of TCSCs in power systems using teaching–learning-based optimisation algorithm. Neural Comput Appl 26(5):1249–1256

    Article  Google Scholar 

  • Jordehi AR (2015c) Brainstorm optimisation algorithm (BSOA): an efficient algorithm for finding optimal location and setting of FACTS devices in electric power systems. Int J Electr Power Energy Syst 69:48–57

    Article  Google Scholar 

  • Jordehi AR (2016) Optimal allocation of FACTS devices for static security enhancement in power systems via imperialistic competitive algorithm (ICA). Appl Soft Comput 48:317–328

    Article  Google Scholar 

  • Jordehi AR et al (2015) Enhanced leader PSO (ELPSO): a new algorithm for allocating distributed TCSC’s in power systems. Int J Electr Power Energy Syst 64:771–784

    Article  Google Scholar 

  • Kai X, Kusic G (1988) Application of thyristor-controlled phase shifters to minimize real power losses and augment stability of power systems. IEEE Trans Energy Convers 3(4):792–798

    Article  Google Scholar 

  • Kalair A, Abas N, Khan N (2016) Comparative study of HVAC and HVDC transmission systems. Renew Sustain Energy Rev 59:1653–1675

    Article  Google Scholar 

  • Karami-Horestani A, Golshan MEH, Hajian-Hoseinabadi H (2014) Reliability modeling of TCR–FC type SVC using Markov process. Int J Electr Power Energy Syst 55:305–311

    Article  Google Scholar 

  • Kavitha K, Neela R (2017) Optimal allocation of multi-type FACTS devices and its effect in enhancing system security using BBO, WIPSO & PSO. J Electr Syst Inf Technol. https://doi.org/10.1016/j.jesit.2017.01.008

    Article  Google Scholar 

  • Kazemi A, Badrzadeh B (2004) Modeling and simulation of SVC and TCSC to study their limits on maximum loadability point. Int J Electr Power Energy Syst 26(5):381–388

    Article  Google Scholar 

  • Kezunovic M (2011) Smart fault location for smart grids. IEEE Trans Smart Grid 2(1):11–22

    Article  Google Scholar 

  • Khan I et al (2015) Optimal placement of FACTS controller scheme for enhancement of power system security in Indian scenario. J Electr Syst Inf Technol 2(2):161–171

    Google Scholar 

  • Kjęr SB, Blaabjerg F (2003) A novel single-stage inverter for the ac-module with reduced low-frequency ripple penetration. In: A novel single-stage inverter for the AC-module with reduced low-frequency ripple penetration. EPE Association

  • Krishnan B, Ramalingam M, Vellayutham D (2016) Evolutionary programming-based simulation of bilateral real power contracts by optimal placement of flexible AC transmission system devices using contingency analysis. Electr Power Compon Syst 44(7):806–819

    Article  Google Scholar 

  • Kulkarni DB, Udupi G (2010) ANN-based SVC switching at distribution level for minimal-injected harmonics. IEEE Trans Power Deliv 25(3):1978–1985

    Article  Google Scholar 

  • Kumar N (2010) Comparison of power system stabiliser with series and shunt FACTS controllers in damping power system oscillations. Aust J Electr Electron Eng 7(1):1–14

    Article  Google Scholar 

  • Kumar NS, Gokulakrishnan J (2011) Impact of FACTS controllers on the stability of power systems connected with doubly fed induction generators. Int J Electr Power Energy Syst 33(5):1172–1184

    Article  Google Scholar 

  • Kumar NS, Khan MA (2008) Impact of FACTS controllers on the dynamic stability of power systems connected with wind farms. Wind Eng 32(2):115–141

    Article  Google Scholar 

  • Kumar BV, Srikanth N (2015) Optimal location and sizing of unified power flow controller (UPFC) to improve dynamic stability: a hybrid technique. Int J Electr Power Energy Syst 64:429–438

    Article  Google Scholar 

  • Kumar BK, Singh S, Srivastava S (2007) Placement of FACTS controllers using modal controllability indices to damp out power system oscillations. IET Gener Transm Distrib 1(2):209–217

    Article  Google Scholar 

  • Kundur P, Balu NJ, Lauby MG (1994) Power system stability and control, vol 7. McGraw-Hill, New York

    Google Scholar 

  • Kundur P et al (2004) Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions. IEEE Trans Power Syst 19(3):1387–1401

    Article  Google Scholar 

  • Lee KS, Geem ZW (2004) A new structural optimization method based on the harmony search algorithm. Comput Struct 82(9):781–798

    Article  Google Scholar 

  • Lotfifard S, Kezunovic M, Mousavi MJ (2013) A systematic approach for ranking distribution systems fault location algorithms and eliminating false estimates. IEEE Trans Power Deliv 28(1):285–293

    Article  Google Scholar 

  • Magaji N, Mustafa MW (2009) Optimal location of TCSC device for damping oscillations. ARPN J Eng Appl Sci 4(3):28–34

    Google Scholar 

  • Mahdad B, Srairi K, Bouktir T (2009) Optimal coordination and penetration of distributed generation with shunt FACTS using GA/fuzzy rules. J Electr Eng Technol 4(1):1–12

    Article  Google Scholar 

  • Martins N, Lima LT (1990) Determination of suitable locations for power system stabilizers and static var compensators for damping electromechanical oscillations in large scale power systems. IEEE Trans Power Syst 5(4):1455–1469

    Article  Google Scholar 

  • Milanovic JV, Zhang Y (2010) Global minimization of financial losses due to voltage sags with FACTS based devices. IEEE Trans Power Deliv 25(1):298–306

    Article  Google Scholar 

  • Moazzami M et al (2013) Blackout prevention in power system using flexible AC transmission system devices and combined corrective actions. Electr Power Compon Syst 41(15):1433–1455

    Article  Google Scholar 

  • Mohamed A, Jasmon G (1996) Determining the weak segment of a power system with voltage stability considerations. Electr Mach Power Syst 24(5):555–568

    Article  Google Scholar 

  • Mokhtari M et al (2013) Interaction analysis of multi-function FACTS and D-FACTS controllers by MRGA. Turk J Electr Eng Comput Sci 21(6):1685–1702

    Article  Google Scholar 

  • Molburg J, Kavicky J, Picel K (2008) The design, construction, and operation of long-distance high-voltage electricity transmission technologies. Argonne National Laboratory (ANL), Lemont

    Book  Google Scholar 

  • Mondal D, Chakrabarti A, Sengupta A (2012) Optimal placement and parameter setting of SVC and TCSC using PSO to mitigate small signal stability problem. Int J Electr Power Energy Syst 42(1):334–340

    Article  Google Scholar 

  • Morsali J, Zare K, Hagh MT (2016) Performance comparison of TCSC with TCPS and SSSC controllers in AGC of realistic interconnected multi-source power system. Ain Shams Eng J 7(1):143–158

    Article  Google Scholar 

  • Muyeen S et al (2009) Application of STATCOM/BESS for wind power smoothening and hydrogen generation. Electr Power Syst Res 79(2):365–373

    Article  Google Scholar 

  • Ni Y et al (1998) Incorporating UPFC model into the power system toolbox of the MATLAB for transient stability study. In: TENCON’98. 1998 IEEE region 10 international conference on global connectivity in energy, computer, communication and control. IEEE

  • Obadina O, Berg G (1990) Identifying electrically weak and strong segments of a power system from a voltage stability viewpoint. In: IEE proceedings C (generation, transmission and distribution), IET

  • Okamoto H, Yokoyama A, Sekine Y (1993) Stabilizing control method of variable impedance power systems and its application to variable series capacitor. IEEJ Trans Power Energy 113(3):203–212

    Article  Google Scholar 

  • Okamoto H, Kurita A, Sekine Y (1995) A method for identification of effective locations of variable impedance apparatus on enhancement of steady-state stability in large scale power systems. IEEE Trans Power Syst 10(3):1401–1407

    Article  Google Scholar 

  • Ooi BT et al (1997) Mid-point siting of FACTS devices in transmission lines. IEEE Trans Power Deliv 12(4):1717–1722

    Article  Google Scholar 

  • Padiyar K, Prabhu N (2006) Design and performance evaluation of subsynchronous damping controller with STATCOM. IEEE Trans Power Deliv 21(3):1398–1405

    Article  Google Scholar 

  • Panda S, Patel R (2007) Optimal location of shunt FACTS controllers for transient stability improvement employing genetic algorithm. Electr Power Compon Syst 35(2):189–203

    Article  Google Scholar 

  • Panda S, Patel R (2009) Optimal location of shunt FACTS devices in long transmission lines to improve transient stability. Int J Electr Eng Educ 46(2):150–163

    Article  Google Scholar 

  • Phadke A, Fozdar M, Niazi K (2009) A new multi-objective formulation for optimal placement of shunt flexible AC transmission systems controller. Electr Power Compon Syst 37(12):1386–1402

    Article  Google Scholar 

  • Phadke A, Fozdar M, Niazi K (2012) A new multi-objective fuzzy-GA formulation for optimal placement and sizing of shunt FACTS controller. Int J Electr Power Energy Syst 40(1):46–53

    Article  Google Scholar 

  • Pillai G, Ghosh A, Joshi A (2002) Torsional interaction between an SSSC and a PSS in a series compensated power system. IEE Proc Gener Transm Distrib 149(6):653–658

    Article  Google Scholar 

  • Pilotto LA et al (1997) Determination of needed FACTS controllers that increase asset utilization of power systems. IEEE Trans Power Delivery 12(1):364–371

    Article  Google Scholar 

  • Pourbeik P, Gibbard MJ (1998) Simultaneous coordination of power system stabilizers and FACTS device stabilizers in a multimachine power system for enhancing dynamic performance. IEEE Trans Power Syst 13(2):473–479

    Article  Google Scholar 

  • Preedavichit P, Srivastava SC (1997) Optimal reactive power dispatch considering FACTS devices. In: International conference on advances in power system control, operation and management, pp 620–625

  • Rabiee A, Vanouni M, Parniani M (2012) Optimal reactive power dispatch for improving voltage stability margin using a local voltage stability index. Energy Convers Manag 59:66–73

    Article  Google Scholar 

  • Rahimzadeh S, Bina MT (2011) Looking for optimal number and placement of FACTS devices to manage the transmission congestion. Energy Convers Manag 52(1):437–446

    Article  Google Scholar 

  • Rajabi-Ghahnavieh A, Fotuhi-Firuzabad M, Othman M (2015) Optimal unified power flow controller application to enhance total transfer capability. IET Gener Transm Distrib 9(4):358–368

    Article  Google Scholar 

  • Rao S (2009) EHV-AC, HVDC transmission & distribution engineering: theory, practice and solved problems. Khanna Publishers, Delhi

    Google Scholar 

  • Rao RS, Rao VS (2015) A generalized approach for determination of optimal location and performance analysis of FACTs devices. Int J Electr Power Energy Syst 73:711–724

    Article  Google Scholar 

  • Rao MV, Sivanagaraju S, Suresh CV (2016) Available transfer capability evaluation and enhancement using various FACTS controllers: special focus on system security. Ain Shams Eng J 7(1):191–207

    Article  Google Scholar 

  • Rashid MH (2009) Power electronics: circuits, devices, and applications. Pearson Education, Delhi

    Google Scholar 

  • Renz B et al (1999) AEP unified power flow controller performance. IEEE Trans Power Deliv 14(4):1374–1381

    Article  Google Scholar 

  • Roy P, Ghoshal S, Thakur S (2009) Biogeography-based optimization for economic load dispatch problems. Electr Power Compon Syst 38(2):166–181

    Article  Google Scholar 

  • Roy P, Ghoshal S, Thakur S (2010) Biogeography based optimization for multi-constraint optimal power flow with emission and non-smooth cost function. Expert Syst Appl 37(12):8221–8228

    Article  Google Scholar 

  • Roy P, Ghoshal S, Thakur S (2011) Optimal reactive power dispatch considering flexible AC transmission system devices using biogeography-based optimization. Electr Power Compon Syst 39(8):733–750

    Article  Google Scholar 

  • Saravanan M et al (2007) Application of particle swarm optimization technique for optimal location of FACTS devices considering cost of installation and system loadability. Electr Power Syst Res 77(3):276–283

    Article  Google Scholar 

  • Sarker J, Goswami S (2016) Optimal location of unified power quality conditioner in distribution system for power quality improvement. Int J Electr Power Energy Syst 83:309–324

    Article  Google Scholar 

  • Sautua AHN et al (2013) Survey and crossed comparison of types, optimal location techniques, and power system applications of FACTS. In: PowerTech (POWERTECH), 2013 IEEE Grenoble. IEEE

  • Sedighizadeh M, Faramarzi H, Faramarzi S (2013) Optimal location and setting of FACTS devices using non-dominated sorting particle swarm optimization in fuzzy framework. Int J Tech Phys Probl Eng (IJTPE) 15:95–107

    Google Scholar 

  • Shadmand MB, Balog RS (2014) Multi-objective optimization and design of photovoltaic-wind hybrid system for community smart DC microgrid. IEEE Trans Smart Grid 5(5):2635–2643

    Article  Google Scholar 

  • Shayeghi H, Safari A, Shayanfar H (2010a) PSS and TCSC damping controller coordinated design using PSO in multi-machine power system. Energy Convers Manag 51(12):2930–2937

    Article  Google Scholar 

  • Shayeghi H et al (2010b) TCSC robust damping controller design based on particle swarm optimization for a multi-machine power system. Energy Convers Manag 51(10):1873–1882

    Article  Google Scholar 

  • Shayeghi H et al (2010c) Tuning of damping controller for UPFC using quantum particle swarm optimizer. Energy Convers Manag 51(11):2299–2306

    Article  Google Scholar 

  • Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  • Singh B (2011) Applications of FACTS controllers in power systems for enhance the power system stability: a state-of-the-art. Int J Rev Comput 6:40–69

    Google Scholar 

  • Singh J, Singh S, Srivastava S (2006) Placement of FACTS controllers for enhancing power system loadability. In: Power India conference, 2006 IEEE

  • Singh B et al (2009) Static synchronous compensators (STATCOM): a review. IET Power Electron 2(4):297–324

    Article  Google Scholar 

  • Singh B, Sharma N, Tiwari A (2010) A comprehensive survey of optimal placement and coordinated control techniques of FACTS controllers in multi-machine power system environments. J Electr Eng Technol 5(1):79–102

    Article  Google Scholar 

  • Singh B, Mukherjee V, Tiwari P (2015a) A survey on impact assessment of DG and FACTS controllers in power systems. Renew Sustain Energy Rev 42:846–882

    Article  Google Scholar 

  • Singh RP, Mukherjee V, Ghoshal S (2015b) Optimal reactive power dispatch by particle swarm optimization with an aging leader and challengers. Appl Soft Comput 29:298–309

    Article  Google Scholar 

  • Son KM, Park JK (2000) On the robust LQG control of TCSC for damping power system oscillations. IEEE Trans Power Syst 15(4):1306–1312

    Article  Google Scholar 

  • Song YH, Johns A (eds) (1999) Flexible AC transmission systems (FACTS), no. 30. IET

  • Song S-H, Lim J-U, Moon S-I (2004) Installation and operation of FACTS devices for enhancing steady-state security. Electr Power Syst Res 70(1):7–15

    Article  Google Scholar 

  • Srikumar K, Suresh CV, Sivanagaraju S, Ganesh V (2014) Ordinal optimization approach to power system objectives in the presence of SVC and TCSC. In: International conference on power systems, energy, environment, pp 185–190

  • Taher SA, Afsari SA (2012) Optimal location and sizing of UPQC in distribution networks using differential evolution algorithm. Math Probl Eng 2012

  • Taher SA, Afsari SA (2014) Optimal location and sizing of DSTATCOM in distribution systems by immune algorithm. Int J Electr Power Energy Syst 60:34–44

    Article  Google Scholar 

  • Tang L (2010) Future transmission grids, HVDC and FACTS-systems aspects. In: ARPA-E GENI workshop

  • Taylor JA, Dhople SV, Callaway DS (2016) Power systems without fuel. Renew Sustain Energy Rev 57:1322–1336

    Article  Google Scholar 

  • Verma M, Srivastava S (2005) Optimal placement of SVC for static and dynamic voltage security enhancement. Int J Emerg Electr Power Syst 2(2)

  • Wang L, Hsiung C-T (2011) Dynamic stability improvement of an integrated grid-connected offshore wind farm and marine-current farm using a STATCOM. IEEE Trans Power Syst 26(2):690–698

    Article  Google Scholar 

  • Wang P et al (2013) Harmonizing AC and DC: a hybrid AC/DC future grid solution. IEEE Power Energy Mag 11(3):76–83

    Article  Google Scholar 

  • Wibowo RS et al (2011) FACTS devices allocation with control coordination considering congestion relief and voltage stability. IEEE Trans Power Syst 26(4):2302–2310

    Article  Google Scholar 

  • Xia S et al (2014) Enhanced particle swarm optimisation applied for transient angle and voltage constrained discrete optimal power flow with flexible AC transmission system. IET Gener Transm Distrib 9(1):61–74

    Article  Google Scholar 

  • Yorino N et al (2003) A new formulation for FACTS allocation for security enhancement against voltage collapse. IEEE Trans Power Syst 18(1):3–10

    Article  Google Scholar 

  • Yousefi A, Iu H, Fernando T (2013) Optimal locations and sizes of static var compensators using NSGA II. Aust J Electr Electron Eng 10(3):321–330

    Google Scholar 

  • Yuvaraj T, Ravi K, Devabalaji K (2017) DSTATCOM allocation in distribution networks considering load variations using bat algorithm. Ain Shams Eng J 8:391–403

    Article  Google Scholar 

  • Zhang Y et al (2006) Power injection model of STATCOM with control and operating limit for power flow and voltage stability analysis. Electr Power Syst Res 76(12):1003–1010

    Article  Google Scholar 

  • Zhang Y-J et al (2010) Dynamic voltage support planning for receiving end power systems based on evaluation of state separating and transferring risks. Electr Power Syst Res 80(12):1520–1527

    Article  Google Scholar 

  • Zhao J et al (2010) Reactive power control of wind farm made up with doubly fed induction generators in distribution system. Electr Power Syst Res 80(6):698–706

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fayyaz Ahmad Chaudhry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, A., Amin, M., Khan, R.D. et al. Optimal Allocation of Flexible AC Transmission System Controllers in Electric Power Networks. INAE Lett 3, 41–64 (2018). https://doi.org/10.1007/s41403-018-0035-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41403-018-0035-2

Keywords

Navigation