Simulation study on cosmic ray background at large zenith angle based on GRANDProto35 coincidence array experiment

Abstract

Neutrino detection in the 100 PeV energy region is the ultimate means of studying the origin of ultra-high-energy cosmic rays, in which the large radio detection array giant radio array for neutrino detection (GRAND) project aims to use to decipher this century-old problem. The GRANDProto35 compact array is a microform of 35 radio prototype detectors for the GRAND experiment, which verifies the reliability of GRAND performance through operation, and data analysis of the prototype detectors. As radio detectors are a novel development in recent years, and their indexes need to be verified by traditional detectors, the GRAND Cooperation Group designed and constructed the GRANDProto35 coincidence array composed of radio detectors and scintillation detectors. This study simulated the changes in detection efficiency, effective area, and event rate of cosmic rays with zenith angle based on this coincidence array. The study found that the 1017 eV energy region is sensitive to GRANDProto35 detection. When the energy exceeded 1017 eV, the array detection efficiency could reach more than 95% and the effective area was up to ~ 2 × 106 m2. A simulation study on cosmic ray events with large zenith angles showed that the event rate detected by the array decreased significantly with increasing zenith angle, and the event rate of cosmic rays was approximately 0.1 per day for a zenith angle of 75°. This serves as the background pollution rate for neutrino observation caused by large-angle cosmic-ray events, providing an important reference for further experiments. The study results will be verified after the joint operation of the coincidence array.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. 1.

    http://www.dupont.com

References

  1. 1.

    N.R. Council, others, Connecting Quarks with the Cosmos: Eleven Science Questions for the New Century (National Academies Press, 2003)

  2. 2.

    N. Science, T. Council, A 21st Century Frontier for Discovery: The Physics of the Universe (2004)

  3. 3.

    G.V. Kulikov, G.B. Khristiansen, On the size spectrum of extensive air showers. Sov. Phys. Jetp. 35, 441 (1959)

    Google Scholar 

  4. 4.

    W.D. Apel, J.C. Arteaga, A.F. Badea et al., Energy spectra of elemental groups of cosmic rays: update on the KASCADE unfolding analysis. Astropart. Phys. 31, 86 (2009). https://doi.org/10.1016/j.astropartphys.2008.11.008

    Article  Google Scholar 

  5. 5.

    J. Linsley, Primary cosmic rays of energy 10\(^{17}\) to \(10^{20}\) eV, the energy spectrum and arrival directions. in ICRC, Vol. 4 (1963) p. 77

  6. 6.

    K. Greisen, End to the cosmic-ray spectrum? Phys. Rev. Lett. 16, 748 (1966). https://doi.org/10.1103/PhysRevLett.16.748

    Article  Google Scholar 

  7. 7.

    G.T. Zatsepin, V.A. Kuz’min, Upper limit of the spectrum of cosmic rays. JETPl 4, 78 (1966)

    Google Scholar 

  8. 8.

    D.J. Bird, S.C. Corbató, H.Y. Dai et al., Evidence for correlated changes in the spectrum and composition of cosmic rays at extremely high energies. Phys. Rev. Lett. 71, 3401 (1993). https://doi.org/10.1103/PhysRevLett.71.3401

    Article  Google Scholar 

  9. 9.

    H.B. Hu, Y.Q. Guo, Physics frontier problem in the origin of cosmic ray. Chin. Sci. Bull. (2016). https://doi.org/10.1360/N972015-00702. (in Chinese)

    Article  Google Scholar 

  10. 10.

    M. Tueros, Grand, a giant radio array for neutrino detection: objectives, design and current status. EPJ Web of Conferences. Vol. 216 (EDP Sciences, 2019) p. 01006. https://doi.org/10.1051/epjconf/201921601006

  11. 11.

    M.G. Aartsen, R. Abbasi, Y. Abdou et al., First observation of PeV-energy neutrinos with IceCube. Phys. Rev. Lett. 111, 021103 (2013). https://doi.org/10.1103/PhysRevLett.111.021103

    Article  Google Scholar 

  12. 12.

    IceCube Collaboration, Evidence for high-energy extraterrestrial neutrinos at the IceCube detector. Science (2013). https://doi.org/10.1126/science.1242856

  13. 13.

    M.G. Aartsen, M. Ackermann, J. Adams et al., Constraints on galactic neutrino emission with seven years of IceCube data. Astrophys. J. 849, 67 (2017). https://doi.org/10.3847/1538-4357/aa8dfb

    Article  Google Scholar 

  14. 14.

    J. Álvarez-Muñiz, R.A. Batista, J. Bolmont et al., The giant radio array for neutrino detection (GRAND): science and design. Sci. China Phys. Chem. 63, 219501 (2020). https://doi.org/10.1007/s11433-018-9385-7

    Article  Google Scholar 

  15. 15.

    O. Martineau-Huynh, The Giant Radio Array for Neutrino Detection. Paper Presented in the 36th International Cosmic Ray Conference (Madison, Wisconsin, USA 24 July–1 August 2019)

  16. 16.

    Z. Qian, X.P. Wu, M. Johnston-Hollitt et al., Radio sources in the NCP region observed with the 21 centimeter array. Astrophys. J. (2016). https://doi.org/10.3847/0004-637x/832/2/190

    Article  Google Scholar 

  17. 17.

    D. Charrier, K.D. de Vries, Q.B. Gou et al., Autonomous radio detection of air showers with the TREND50 antenna array. Astropart. Phys. 110, 15 (2019). https://doi.org/10.1016/j.astropartphys.2019.03.002

    Article  Google Scholar 

  18. 18.

    D. Heck, J. Knapp, J. Capdevielle et al., CORSIKA: a Monte Carlo code to simulate extensive air showers. Report fzka (1998). https://doi.org/10.5445/IR/270043064

    Article  Google Scholar 

  19. 19.

    A. Ferrari, P.R. Sala, A. Fasso et al., FLUKA: a multi-particle transport code. Technical Report (Stanford Linear Accelerator Center (SLAC), 2005)

  20. 20.

    S. Agostinelli, J. Allison, Ka Amako et al., GEANT4—a simulation toolkit. Nucl. Instrum. Methods A 506, 250 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  Google Scholar 

  21. 21.

    J. Allison, K. Amako, J. Apostolakis et al., Geant4 developments and applications. IEEE. Trans. Nucl. Sci. 53, 270 (2006). https://doi.org/10.1109/TNS.2006.869826

    Article  Google Scholar 

  22. 22.

    Eljen Technology, EJ-200 Plastic Scintillator. http://www.eljentechnology.com/images/products/data_sheets/EJ-200_EJ-204_EJ-208_EJ-212.pdf

  23. 23.

    A. Levin, C. Moisan, A more physical approach to model the surface treatment of scintillation counters and its implementation into DETECT. in 1996 IEEE Nuclear Science Symposium and Conference Record. Vol. 2 (IEEE, 1996), pp. 702–706

  24. 24.

    Y. Zhang, Q.B. Gou, H. Cai et al., New prototype scintillator detector for the Tibet AS\(\gamma\) experiment. J. Instrum. 12, 11011 (2017). https://doi.org/10.1088/1748-0221/12/11/P11011

    Article  Google Scholar 

  25. 25.

    X.X. Zhou, N. Cheng, H.B. Hu et al., Sensitivity study of gamma-ray burst detection by ARGO. High. Energ. Phys. Nucl. 31, 1 (2007)

    Google Scholar 

  26. 26.

    A. Romero-Wolf, S. Wissel, H. Schoorlemmer et al., Comprehensive analysis of anomalous ANITA events disfavors a diffuse tau-neutrino flux origin. Phys. Rev. D. 99, 063011 (2019). https://doi.org/10.1103/PhysRevD.99.063011

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Xiang-Li Qian, Xu Wang,Hui-Ying Sun,Zhen Wang and Olivier Martineau-Huynh. The first draft of the manuscript was written by Xiang-Li Qian and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xu Wang.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11705103 and 12005120).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qian, XL., Wang, X., Sun, HY. et al. Simulation study on cosmic ray background at large zenith angle based on GRANDProto35 coincidence array experiment. NUCL SCI TECH 32, 5 (2021). https://doi.org/10.1007/s41365-020-00841-3

Download citation

Keywords

  • GRANDProto35
  • GEANT4
  • Scintillation detector
  • Cosmic ray