Skip to main content
Log in

Extraction of inclusive photon production at mid-rapidity in p + p and Au + Au collisions at \(\sqrt{s_{\rm{NN}}}\) = 200 GeV

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

We present a comprehensive study on the individual sources of an inclusive photon production during high-energy hadronic collisions. The cross section and invariant yields of inclusive photons are obtained as a function of \(p_{\rm {T}}\) at mid-rapidity (\(|y|<0.5\)) in p + p and Au + Au collisions at \(\sqrt{s_{\rm{NN}}}\) = 200 GeV, respectively. These results provide crucial inputs to separate measurements of open bottom and charm hadron yield suppression in heavy-ion collisions, which are used to test the mass hierarchy of the parton energy loss in the quark gluon plasma created during these collisions. The procedure developed in this study can also be applied to other measurements of electrons from an open heavy-flavor hadron decay, such as the collective flow in the RHIC beam energy scan program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Edward, Strongly coupled quark-gluon plasma in heavy ion collisions. Rev. Mod. Phys. 89, 035001 (2017). https://doi.org/10.1103/RevModPhys.89.035001

    Article  MathSciNet  Google Scholar 

  2. J. Adams, M.M. Aggarwal, Z. Ahammed et al., (STAR Collaboration), Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102–183 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.085

    Article  Google Scholar 

  3. K. Adcox, S.S. Adler, S. Afanasiev et al., (PHENIX Collaboration), Formation of dense partonic matter in relativistic nucleusnucleus collisions at RHIC: experimental evaluation by the PHENIX Collaboration. Nucl. Phys. A 757, 184–283 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.086

    Article  Google Scholar 

  4. B. Muller, J. Schukraft, B. Wyslouch, First results from Pb+Pb collisions at the LHC. Ann. Rev. Nucl. Part Sci. 62, 361–386 (2012). https://doi.org/10.1146/annurev-nucl-102711-094910

    Article  Google Scholar 

  5. Z. Lin, M. Gyulassy, Open charm as a probe of preequilibrium dynamics in nuclear collisions. Phys. Rev. C 51, 2177 (1995). https://doi.org/10.1103/PhysRevC.51.2177; Erratum: Phys. Rev. C 52, 440 (1995). https://doi.org/10.1103/PhysRevC.52.440

  6. M. Cacciari, P. Nason, R. Vogt, QCD predictions for charm and bottom quark production at RHIC. Phys. Rev. Lett. 95, 122001 (2005). https://doi.org/10.1103/PhysRevLett.95.122001

    Article  Google Scholar 

  7. Z. Tang, W. Zha, Y. Zhang, An experimental review of open heavy flavor and quarkonium production at RHIC. Nucl. Sci. Tech. 31, 81 (2020). https://doi.org/10.1007/s41365-020-00785-8

    Article  Google Scholar 

  8. X. Luo, S. Shi, N. Xu et al., A study of the properties of the QCD phase diagram in high-energy nuclear collisions. Particles 2020(3), 278–307 (2020). https://doi.org/10.3390/particles3020022

    Article  Google Scholar 

  9. J. Adam, L. Adamczyk, J.R. Adams et al., (STAR Collaboration), Centrality and transverse momentum dependence of \(D^0\)-meson production at mid-rapidity in Au+Au collisions at \(\sqrt{s_{{\rm NN}}}\) = 200 GeV. Phys. Rev. C 99, 034908 (2019). https://doi.org/10.1103/PhysRevC.99.034908

    Article  Google Scholar 

  10. B. Abelev, J. Adam, D. Adamova et al., (ALICE Collaboration), Suppression of high transverse momentum D mesons in central Pb–Pb collisions at \(\sqrt{s_{{\rm NN}}}\) = 2.76 TeV. JHEP 09, 112 (2012). https://doi.org/10.1007/JHEP09(2012)112

    Article  Google Scholar 

  11. J. Adam, D. Adamova, M.M. Aggarwal et al., (ALICE Collaboration), Transverse momentum dependence of D-meson production in Pb–Pb collisions at \(\sqrt{s_{{\rm NN}}}\) = 2.76 TeV. JHEP 03, 081 (2016). https://doi.org/10.1007/JHEP03(2016)081

    Article  Google Scholar 

  12. A.M. Sirunyan, A. Tumasyan, W. Adam et al., (CMS Collaboration), Nuclear modification factor of \(D^0\) mesons in PbPb collisions at \(\sqrt{s_{{\rm NN}}}\) = 5.02 TeV. Phys. Lett. B 782, 474–496 (2018). https://doi.org/10.1016/j.physletb.2018.05.074

    Article  Google Scholar 

  13. A. Buzzatti, M. Gyulassy, Jet flavor tomography of quark gluon plasmas at RHIC and LHC. Phys. Rev. Lett. 108, 022301 (2012). https://doi.org/10.1103/PhysRevLett.108.022301

    Article  Google Scholar 

  14. S. Zhang, Open bottom production in Au+Au collisions at \(\sqrt{s_{{\rm NN}}}\) = 200 GeV with the STAR experiment. Proceedings 10, 39 (2019). https://doi.org/10.3390/proceedings2019010039

    Article  Google Scholar 

  15. M.M. Aggarwal, Z. Ahammed, A.V. Alakhverdyants et al., (STAR Collaboration), Measurement of the bottom quark contribution to nonphotonic electron production in \(p\)+\(p\) Collisions at \(\sqrt{s}\) = 200 GeV. Phys. Rev. Lett. 105, 202301 (2010). https://doi.org/10.1103/PhysRevLett.105.202301

    Article  Google Scholar 

  16. F. Si, X. Chen, L. Zhou et al., Charm and beauty isolation from heavy flavor decay electrons in Au+Au collisions at \(\sqrt{s_{{\rm NN}}}\) = 200 GeV at RHIC. Phys. Lett. B 805, 135465 (2020). https://doi.org/10.1016/j.physletb.2020.135465

    Article  Google Scholar 

  17. H. Qiu, STAR heavy flavor tracker. Nucl. Phys. A 931, 1141–1146 (2014). https://doi.org/10.1016/j.nuclphysa.2014.08.056

    Article  Google Scholar 

  18. H. Wang, J.H. Chen, Y.G. Ma et al., Charm hadron azimuthal angular correlations in Au+Au Collisions at \(\sqrt{s_{{\rm NN}}}\) = 200 GeV from parton scatterings. Nucl. Sci. Tech. 30, 185 (2019). https://doi.org/10.1007/s41365-019-0706-z

    Article  Google Scholar 

  19. H. Agakishiev, M.M. Aggarwal, Z. Ahammed et al., (STAR Collaboration), High \({p}_{T}\) non-photonic electron production in \(p\)+\(p\) collisions at \(\sqrt{s}\) =200 GeV. Phys. Rev. D 83, 052006 (2011). https://doi.org/10.1103/PhysRevD.83.052006

    Article  Google Scholar 

  20. T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual. JHEP 0605, 026 (2006). https://doi.org/10.1088/1126-6708/2006/05/026

    Article  MATH  Google Scholar 

  21. S.S. Adler, S. Afanasiev, C. Aidala et al., (PHENIX Collaboration), Centrality dependence of \(\pi ^0\) and \(\eta\) production at large transverse momentum in \(\sqrt{s_{{\rm NN}}}\) = 200 GeV d+Au collisions. Phys. Rev. Lett. 98, 172302 (2007). https://doi.org/10.1103/PhysRevLett.98.172302

    Article  Google Scholar 

  22. A. Adare, S. Afanasiev, C. Aidala et al., (PHENIX Collaboration), Inclusive cross section and double helicity asymmetry for \(\pi ^0\) production in p + p collisions at \(\sqrt{s}\) = 200 GeV: Implications for the polarized gluon distribution in the proton. Phys. Rev. D 76, 051106 (2007). https://doi.org/10.1103/PhysRevD.76.051106

    Article  Google Scholar 

  23. S.S. Adare, S. Afanasiev, C. Aidala et al., (PHENIX Collaboration), Midrapidity neutral-pion production in proton-proton collisions at \(\sqrt{s}\) = 200 GeV. Phys. Rev. Lett. 91, 241803 (2003). https://doi.org/10.1103/PhysRevLett.91.241803

    Article  Google Scholar 

  24. J. Adams, C. Adler, M.M. Aggarwal et al., (STAR Collaboration), Identified particle distributions in pp and Au+Au collisions at \(\sqrt{s_{{\rm NN}}}\) = 200 GeV. Phys. Rev. Lett. 92, 112301 (2004). https://doi.org/10.1103/PhysRevLett.92.112301

    Article  Google Scholar 

  25. B.I. Abelev, M.M. Aggarwal, Z. Ahammed et al., (STAR Collaboration), Systematic measurements of identified particle spectra in pp, d+Au and Au+Au collisions from STAR. Phys. Rev. C 79, 034909 (2009). https://doi.org/10.1103/PhysRevC.79.034909

    Article  Google Scholar 

  26. J. Adams, M.M. Aggarwal, Z. Ahammed et al., (STAR Collaboration), Pion, kaon, proton and anti-proton transverse momentum distributions from \(p\)+\(p\) and d+Au collisions at \(\sqrt{s_{{\rm NN}}}\) = 200 GeV. Phys. Lett. B 616, 8–16 (2005). https://doi.org/10.1016/j.physletb.2005.04.041

    Article  Google Scholar 

  27. J. Adams, M.M. Aggarwal, Z. Ahammed et al., (STAR Collaboration), Identified hadron spectra at large transverse momentum in \(p\)+\(p\) and d+Au collisions at \(\sqrt{s_{{\rm NN}}}\) = 200 GeV. Phys. Lett. B 637, 161–169 (2006). https://doi.org/10.1016/j.physletb.2006.04.032

    Article  Google Scholar 

  28. S.H. Zhang, L. Zhou, Y.F. Zhang et al., Multiplicity dependence of charged particle, \(\phi\) meson, and multi-strange particle productions in \(p\)+\(p\) collisions at \(\sqrt{s}\) = 200 GeV from PYTHIA simulation. Nucl. Sci. Tech. 29, 136 (2018). https://doi.org/10.1007/s41365-018-0469-y

    Article  Google Scholar 

  29. A. Adare, S. Afanasiev, C. Aidala et al., (PHENIX Collaboration), Cross section and double helicity asymmetry for \(\eta\) mesons and their comparison to \(\pi ^0\) production in \(p\)+\(p\) collisions at \(\sqrt{s}\) = 200 GeV. Phys. Rev. D 83, 032001 (2011). https://doi.org/10.1103/PhysRevD.83.032001

    Article  Google Scholar 

  30. B.I. Abelev, M.M. Aggarwal, Z. Ahammed et al., (STAR Collaboration), Inclusive \(\pi ^0\), \(\eta\), and direct photon production at high transverse momentum in \(p\)+\(p\) and d+Au collisions at \(\sqrt{s_{{\rm NN}}}\) = 200 GeV. Phys. Rev. C 81, 064904 (2010). https://doi.org/10.1103/PhysRevC.81.064904

    Article  Google Scholar 

  31. S.S. Adler, S. Afanasiev, C. Aidala et al., (PHENIX Collaboration), High transverse momentum \(\eta\) meson production in \(p\)+\(p\), d+Au, and Au+Au collisions at \(\sqrt{s_{{\rm NN}}}\) = 200 GeV. Phys. Rev. C 75, 024909 (2007). https://doi.org/10.1103/PhysRevC.75.024909

    Article  Google Scholar 

  32. L. Adamczyk, J.K. Adkins, G. Agakishiev et al., (STAR Collaboration), Energy dependence of acceptance-corrected dielectron excess mass spectrum at mid-rapidity in Au+Au collisions at \(\sqrt{s_{{\rm NN}}}\) = 19.6 and 200 GeV. Phys. Lett. B 750, 64–71 (2015). https://doi.org/10.1016/j.physletb.2015.08.044

    Article  Google Scholar 

  33. G. Agakichiev, H. Appelshauser, J. Bielcikova et al., (CERES Collaboration), \(e^+e^-\)-pair production in Pb-Au collisions at 158 GeV per nucleon. Eur. Phys. J. C 41, 475–513 (2005). https://doi.org/10.1140/epjc/s2005-02272-3

    Article  Google Scholar 

  34. A. Adare, S. Afanasiev, C. Aidala et al., (PHENIX Collaboration), Centrality dependence of low-momentum direct-photon production in Au+Au collisions at \(\sqrt{s_{{\rm NN}}}\) = 200 GeV. Phys. Rev. C 91, 064904 (2015). https://doi.org/10.1103/PhysRevC.91.064904

    Article  Google Scholar 

  35. S.S. Adler, S. Afanasiev, C. Aidala et al., (PHENIX Collaboration), Measurement of direct photon production in \(p\)+\(p\) collisions at \(\sqrt{s}\) = 200 GeV. Phys. Rev. Lett. 98, 012002 (2007). https://doi.org/10.1103/PhysRevLett.98.012002

    Article  Google Scholar 

  36. A. Adare, S. Afanasiev, C. Aidala et al., (PHENIX Collaboration), Direct photon production in \(p\)+\(p\) collisions at \(\sqrt{s}\) = 200 GeV at midrapidity. Phys. Rev. D 86, 072008 (2012). https://doi.org/10.1103/PhysRevD.86.072008

    Article  Google Scholar 

  37. B.I. Abelev, M.M. Aggarwal, Z. Ahammed et al., (STAR Collaboration), Identified baryon and meson distributions at large transverse momenta from Au+Au collisions at \(\sqrt{s_{{\rm NN}}}\) = 200 GeV. Phys. Rev. Lett. 97, 152301 (2006). https://doi.org/10.1103/PhysRevLett.97.152301

    Article  Google Scholar 

  38. A. Adare, S. Afanasiev, C. Aidala et al., (PHENIX Collaboration), Suppression pattern of neutral pions at high transverse momentum in Au+Au collisions at \(\sqrt{s_{{\rm NN}}}\) = 200 GeV and constraints on medium transport coefficients. Phys. Rev. Lett. 101, 232301 (2008). https://doi.org/10.1103/PhysRevLett.101.232301

    Article  Google Scholar 

  39. A. Adare, S. Afanasiev, C. Aidala et al., (PHENIX Collaboration), Neutral pion production with respect to centrality and reaction plane in Au+Au Collisions at \(\sqrt{s_{{\rm NN}}}\) = 200 GeV. Phys. Rev. C 87, 034911 (2013). https://doi.org/10.1103/PhysRevC.87.034911

    Article  Google Scholar 

  40. K. Saraswat, P. Shukla, V. Singh, Transverse momentum spectra of hadrons in high energy pp and heavy ion collisions. J. Phys. Commun. 2, 035003 (2018). https://doi.org/10.1088/2399-6528/aab00f

    Article  Google Scholar 

  41. A. Adare, S. Afanasiev, C. Aidala et al., (PHENIX Collaboration), Transverse momentum dependence of \(\eta\) meson suppression in Au+Au collisions at \(\sqrt{s_{{\rm NN}}}\) = 200 GeV. Phys. Rev. C 82, 011902 (2010). https://doi.org/10.1103/PhysRevC.82.011902

    Article  Google Scholar 

  42. L. Adamczyk, J.K. Adkins, G. Agakishiev et al., (STAR Collaboration), Direct virtual photon production in Au+Au collisions at \(\sqrt{s_{{\rm NN}}}\) = 200 GeV. Phys. Lett. B 770, 451–458 (2017). https://doi.org/10.1016/j.physletb.2017.04.050

    Article  Google Scholar 

  43. A. Adare, S. Afanasiev, C. Aidala et al., (PHENIX Collaboration), Enhanced production of direct photons in Au+Au collisions at \(\sqrt{s_{{\rm NN}}}\) = 200 GeV and implications for the initial temperature. Phys. Rev. Lett. 104, 132301 (2010). https://doi.org/10.1103/PhysRevLett.104.132301

    Article  Google Scholar 

  44. L. Adamczyk, J.K. Adkins, G. Agakishiev et al., (STAR Collaboration), Elliptic flow of electrons from heavy-flavor hadron decays in Au+Au collisions at \(\sqrt{s_{{\rm NN}}}\) = 200, 62.4, and 39 GeV. Phys. Rev. C 95, 034907 (2017). https://doi.org/10.1103/PhysRevC.95.034907

    Article  Google Scholar 

  45. Studying the Phase Diagram of QCD Matter at RHIC. https://drupal.star.bnl.gov/STAR/files/BES_WPII_ver6.9_Cover.pdf

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Sheng-Hui Zhang. The first draft of the manuscript was written by Sheng-Hui Zhang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yi-Fei Zhang.

Additional information

This work was supported by National Key Research and Development Program of China (Nos. 2018YFE0205200, 2018YFE0104700, and 2020YFE0202002), National Natural Science Foundation of China (No. 11890712), Natural Science Foundation of Anhui Province (No. 1808085J02), Fundamental Research Funds for the Central Universities (No. WK2030000013) and the Project funded by the China Postdoctoral Science Foundation (No. 2019M652177).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, SH., Ma, RR., Zhang, YF. et al. Extraction of inclusive photon production at mid-rapidity in p + p and Au + Au collisions at \(\sqrt{s_{\rm{NN}}}\) = 200 GeV. NUCL SCI TECH 32, 7 (2021). https://doi.org/10.1007/s41365-020-00840-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-020-00840-4

Keywords

Navigation