Numerical investigation of natural convection characteristics of a heat pipe-cooled passive residual heat removal system for molten salt reactors

Abstract

The limited availability of studies on the natural convection heat transfer characteristics of fluoride salt has hindered progress in the design of passive residual heat removal systems (PRHRS) for molten salt reactors. This paper presents results from a numerical investigation of natural convection heat transfer characteristics of fluoride salt and heat pipes in the drain tank of a PRHRS. Simulation results are compared with experimental data, demonstrating the accuracy of the calculation methodology. Temperature distribution of fluoride salt and heat transfer characteristics are obtained and analyzed. The radial temperature of liquid fluoride salt in the drain tank shows a uniform distribution, while temperatures increase with increase in axial height from the bottom to the top of the drain tank. In addition, natural convection intensity increases with increase in height of the heat pipes in the tank. Spacing between heat pipes has no obvious effect on the natural convection heat transfer coefficient. This study will contribute to the design of passive heat removal systems for advanced nuclear reactors.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    IAEA, Nuclear Safety Review for 2018, Vienna (2019)

  2. 2.

    M. Lin, M. Cheng, Z. Dai, Feasibility of an innovative long-life molten chloride-cooled reactor. Nucl. Sci. Tech. 31, 33 (2020). https://doi.org/10.1007/s41365-020-0751-7

    Article  Google Scholar 

  3. 3.

    X. Jiang, H. Lu, Y. Chen et al., Numerical and experimental investigation of a new conceptual fluoride salt freeze valve for thorium-based molten salt reactor. Nucl. Sci. Tech. 31, 16 (2020). https://doi.org/10.1007/s41365-020-0729-5

    Article  Google Scholar 

  4. 4.

    W. Zhang, D. Zhang, W. Tian et al., Thermal-hydraulic analysis of the improved TOPAZ-II power system using a heat pipe radiator. Nucl. Eng. Des. 307, 218–233 (2016). https://doi.org/10.1016/j.nucengdes.2016.07.020

    Article  Google Scholar 

  5. 5.

    W. Zhang, C. Wang, R. Chen et al., Preliminary design and thermal analysis of a liquid metal heat pipe radiator for TOPAZ-II power system. Ann. Nucl. Energy 97, 208–220 (2016). https://doi.org/10.1016/j.anucene.2016.07.007

    Article  Google Scholar 

  6. 6.

    Y. Yuan, J. Shan, B. Zhang et al., Accident analysis of heat pipe cooled and AMTEC conversion space reactor system. Ann. Nucl. Energy 94, 706–715 (2016). https://doi.org/10.1016/j.anucene.2016.04.017

    Article  Google Scholar 

  7. 7.

    M.M. Razzaque, On application of heat pipes for passive shutdown heat removal in advanced liquid metal and gas-cooled reactor designs. Ann. Nucl. Energy 17, 139–142 (1990). https://doi.org/10.1016/0306-4549(90)90091-Q

    Article  Google Scholar 

  8. 8.

    S.B. Seo, I.G. Kim, K.M. Kim et al., Risk mitigation strategy by passive IN-core cooling system for advanced nuclear reactors. Ann. Nucl. Energy 111, 554–567 (2018). https://doi.org/10.1016/j.anucene.2017.09.030

    Article  Google Scholar 

  9. 9.

    K.M. Kim, I.C. Bang, Heat transfer characteristics and operation limit of pressurized hybrid heat pipe for small modular reactors. Appl. Therm. Eng. 112, 560–571 (2017). https://doi.org/10.1016/j.applthermaleng.2016.10.077

    Article  Google Scholar 

  10. 10.

    H. Qin, C. Wang, S. Qiu et al., Study of tritium transport characteristics in a transportable fluoride-salt-cooled high-temperature reactor. Int. J. Energy Res. 42, 1536–1550 (2018). https://doi.org/10.1002/er.3944

    Article  Google Scholar 

  11. 11.

    H. Qin, C. Wang, D. Zhang et al., Transient analysis of tritium transport characteristics in fluoride-salt-cooled high-temperature reactor. Prog. Nucl. Energy 117, 103064 (2019). https://doi.org/10.1016/j.pnucene.2019.103064

    Article  Google Scholar 

  12. 12.

    K. Ma, C. Yu, X. Cai et al., Transmutation of I-129 in a single-fluid double-zone thorium molten salt reactor. Nucl. Sci. Tech. 31, 10 (2020). https://doi.org/10.1007/s41365-019-0720-1

    Article  Google Scholar 

  13. 13.

    X. Li, D. Cui, Y. Ma et al., Influence of U-235 enrichment on the moderator temperature coefficient of reactivity in a graphite-moderated molten salt reactor. Nucl. Sci. Tech. 30, 166 (2019). https://doi.org/10.1007/s41365-019-0694-z

    Article  Google Scholar 

  14. 14.

    J. Tournier, M.S. El-Genk, Startup of a horizontal lithium–molybdenum heat pipe from a frozen state. Int. J. Heat Mass Transf. 46, 671–685 (2003). https://doi.org/10.1016/S0017-9310(02)00324-1

    Article  Google Scholar 

  15. 15.

    C. Wang, D. Zhang, S. Qiu et al., Study on the characteristics of the sodium heat pipe in passive residual heat removal system of molten salt reactor. Nucl. Eng. Des. 265, 691–700 (2013). https://doi.org/10.1016/j.nucengdes.2013.09.023

    Article  Google Scholar 

  16. 16.

    M. Liu, D. Zhang, C. Wang et al., Experimental study on the heat transfer characteristics of fluoride salt in the new conceptual passive heat removal system of molten salt reactor. Int. J. Energy Res. 42, 1635–1648 (2018). https://doi.org/10.1002/er.3959

    Article  Google Scholar 

  17. 17.

    T. Persoons, I.M.O. Gorman, D.B. Donoghue et al., Natural convection heat transfer and fluid dynamics for a pair of vertically aligned isothermal horizontal cylinders. Int. J. Heat Mass Transf. 54, 5163–5172 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.033

    Article  Google Scholar 

  18. 18.

    R. Chouikh, A. Guizani, A. El Cafsi et al., Experimental study of the natural convection flow around an array of heated horizontal cylinders. Renew. Energy 21, 65–78 (2000). https://doi.org/10.1016/S0960-1481(99)00120-2

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Cheng-Long Wang or Sui-Zheng Qiu.

Additional information

This work was supported by the National Key R&D Program of China (No. 2019YFB1901100), the National Natural Science Foundation of China (No. 11705138), and the China National Postdoctoral Program for Innovative Talents (No. BX201600124).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Qin, H., Zhang, D. et al. Numerical investigation of natural convection characteristics of a heat pipe-cooled passive residual heat removal system for molten salt reactors. NUCL SCI TECH 31, 65 (2020). https://doi.org/10.1007/s41365-020-00780-z

Download citation

Keywords

  • Molten salt reactor
  • Passive heat removal system
  • Heat pipe
  • Natural convection
  • Numerical simulation