Skip to main content
Log in

Influence of α-clustering nuclear structure on the rotating collision system

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

In recent years, the collective motion properties of global rotation of the symmetric colliding system in relativistic energies have been investigated. In addition, the initial geometrical shape effects on the collective flows have been explored using a hydrodynamical model, a transport model, etc. In this work, we study the asymmetric \(^{12}{\mathrm {C}} + ^{197}\!\!\!{\mathrm{Au}}\) collision at \(200\,\hbox { GeV/}c\) and the effect of the exotic nuclear structure on the global rotation using a multi-phase transport model. The global angular momentum and averaged angular speed were calculated and discussed for the collision system at different evolution stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Adamczyk, J.K. Adkins, G. Agakishiev et al., (STAR Collaboration), Beam-energy dependence of the directed flow of protons, antiprotons, and pions in Au + Au collisions. Phys. Rev. Lett. 112, 162301 (2014). https://doi.org/10.1103/PhysRevLett.112.162301

    Article  Google Scholar 

  2. L. Adamczyk, J.K. Adkins, G. Agakishiev, (STAR Collaboration), Elliptic flow of identified hadrons in Au + Au collisions at \(\sqrt{s_\text{ NN }}\) = 7.7–62.4 GeV. Phys. Rev. C 88, 014902 (2013). https://doi.org/10.1103/PhysRevC.88.014902

    Article  Google Scholar 

  3. L. Adamczyk, J.K. Adkins, G. Agakishiev et al., (STAR Collaboration), Third harmonic flow of charged particles in Au + Au collisions at \(\sqrt{s_\text{ NN }}\) = 200 GeV. Phys. Rev. C 88, 014904 (2013). https://doi.org/10.1103/PhysRevC.88.014904

    Article  Google Scholar 

  4. L. Adamczyk, J.K. Adkins, G. Agakishiev et al., (STAR Collaboration), Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions. Phys. Rev. Lett. 114, 252302 (2015). https://doi.org/10.1103/PhysRevLett.114.252302

    Article  Google Scholar 

  5. J. Adams, C. Adler, M.M. Aggarwal et al., (STAR Collaboration), Evidence from \(d+\rm A \rm u \) measurements for final-state suppression of high-\({p}_{T}\) hadrons in \(\rm A \rm u +\rm A \rm u \) collisions at RHIC. Phys. Rev. Lett. 91, 072304 (2003). https://doi.org/10.1103/PhysRevLett.91.072304

    Article  Google Scholar 

  6. J. Adams, C. Adler, M.M. Aggarwal et al., (STAR Collaboration), Transverse-momentum and collision-energy dependence of high-\({p}_{T}\) hadron suppression in \(\rm A \rm u +\rm A \rm u \) collisions at ultrarelativistic energies. Phys. Rev. Lett. 91, 172302 (2003). https://doi.org/10.1103/PhysRevLett.91.172302

    Article  Google Scholar 

  7. L. Adamczyk, J.K. Adkins, G. Agakishiev et al., (STAR Collaboration), Beam-energy-dependent two-pion interferometry and the freeze-out eccentricity of pions measured in heavy ion collisions at the STAR detector. Phys. Rev. C 92, 014904 (2015). https://doi.org/10.1103/PhysRevC.92.014904

    Article  Google Scholar 

  8. A. Adare, et al. (PHENIX Collaboration), Beam-energy and system-size dependence of the space-time extent of the pion emission source produced in heavy ion collisions (2014). arXiv:1410.2559

  9. Y. Jiang, Z.-W. Lin, J. Liao, Rotating quark-gluon plasma in relativistic heavy-ion collisions. Phys. Rev. C 94, 044910 (2016). https://doi.org/10.1103/PhysRevC.94.044910

    Article  Google Scholar 

  10. Z.-T. Liang, X.-N. Wang, Globally polarized quark-gluon plasma in noncentral \(A+A\) collisions. Phys. Rev. Lett. 94, 102301 (2005). https://doi.org/10.1103/PhysRevLett.94.102301

    Article  Google Scholar 

  11. X.-G. Huang, P. Huovinen, X.-N. Wang, Quark polarization in a viscous quark-gluon plasma. Phys. Rev. C 84, 054910 (2011). https://doi.org/10.1103/PhysRevC.84.054910

    Article  Google Scholar 

  12. A.H. Tang, B. Tu, C.S. Zhou, Practical considerations for measuring global spin alignment of vector mesons in relativistic heavy ion collisions. Phys. Rev. C 98, 044907 (2018). https://doi.org/10.1103/PhysRevC.98.044907

    Article  Google Scholar 

  13. Z.-T. Liang, X.-N. Wang, Spin alignment of vector mesons in non-central A + A collisions. Phys. Lett. B 629, 20–26 (2005). https://doi.org/10.1016/j.physletb.2005.09.060

    Article  Google Scholar 

  14. L. Adamczyk et al., (STAR Collaboration), Global \(\Lambda \) hyperon polarization in nuclear collisions. Nature 541, 62–65 (2017). https://doi.org/10.1038/nature23004

    Article  Google Scholar 

  15. R.D. de Souza, J. Takahashi, T. Kodama et al., Effects of initial state fluctuations in the final state elliptic flow measurements using the NeXSPheRIO model. Phys. Rev. C 85, 054909 (2012). https://doi.org/10.1103/PhysRevC.85.054909

    Article  Google Scholar 

  16. A. Chaudhuri, Fluctuating initial conditions and fluctuations in elliptic and triangular flow. Phys. Lett. B 710, 339–342 (2012). https://doi.org/10.1016/j.physletb.2012.02.067

    Article  Google Scholar 

  17. H. Song, S.A. Bass, U. Heinzi, Elliptic flow in \(\sqrt{s}\) = 200 GeV Au + Au collisions and \(\sqrt{s}\) = 2.76 TeV Pb + Pb collisions: insights from viscous hydrodynamics + hadron cascade hybrid model. Phys. Rev. C 83, 054912 (2011). https://doi.org/10.1103/PhysRevC.83.054912

    Article  Google Scholar 

  18. S. Floerchinger, U.A. Wiedemann, Mode-by-mode fluid dynamics for relativistic heavy ion collisions. Phys. Lett. B 728, 407–411 (2014). https://doi.org/10.1016/j.physletb.2013.12.025

    Article  Google Scholar 

  19. P. Bozek, W. Broniowski, E.R. Arriola, \(\alpha \) clusters and collective flow in ultrarelativistic carbon-heavy-nucleus collisions. Phys. Rev. C 064902, 90 (2014). https://doi.org/10.1103/PhysRevC.90.064902

    Article  Google Scholar 

  20. W. Broniowski, E.R. Arriola, Signatures of \(\alpha \) clustering in light nuclei from relativistic nuclear collisions. Phys. Rev. Lett. 112, 112501 (2014). https://doi.org/10.1103/PhysRevLett.112.112501

    Article  Google Scholar 

  21. L. Ma, G.L. Ma, Y.G. Ma, Initial partonic eccentricity fluctuations in a multiphase transport model. Phys. Rev. C 94, 044915 (2016). https://doi.org/10.1103/PhysRevC.94.044915

    Article  Google Scholar 

  22. L. Ma, G.L. Ma, Y.G. Ma, Anisotropic flow and flow fluctuations for Au + Au at \(\sqrt{{s}_\text{ NN }}=200\) GeV in a multiphase transport model. Phys. Rev. C 89, 044907 (2014). https://doi.org/10.1103/PhysRevC.89.044907

    Article  Google Scholar 

  23. L.X. Han, G.L. Ma, Y.G. Ma et al., Initial fluctuation effect on harmonic flows in high-energy heavy-ion collisions. Phys. Rev. C 84, 064907 (2011). https://doi.org/10.1103/PhysRevC.84.064907

    Article  Google Scholar 

  24. H.-C. Song, Y. Zhou, K. Gajdosova, Collective flow and hydrodynamics in large and small systems at the LHC. Nucl. Sci. Technol. 28, 99 (2017). https://doi.org/10.1007/s41365-017-0245-4

    Article  Google Scholar 

  25. J. Wang, Y.G. Ma, G.Q. Zhang, Initial fluctuation effect on elliptic flow in Au + Au collision at 1 GeV/A. Nucl. Sci. Technol. 24, 030501 (2013). https://doi.org/10.13538/j.1001-8042/nst.2013.03.004

    Article  Google Scholar 

  26. C.C. Guo, W.B. He, Y.G. Ma, Collective flows of \(^{16}\text{ O }+^{16}\text{ O }\) collisions with \(\alpha \)-clustering configurations. Chin. Phys. Lett. 34, 092101 (2017). https://doi.org/10.1088/0256-307X/34/9/092101

    Article  Google Scholar 

  27. X.-F. Luo, N. Xu, Search for the QCD critical point with fluctuations of conserved quantities in relativistic heavy-ion collisions at RHIC: an overview. Nucl. Sci. Technol. 28, 112 (2017). https://doi.org/10.1007/s41365-017-0257-0

    Article  Google Scholar 

  28. X. Jin, J. Chen, Z. Lin et al., Explore the QCD phase transition phenomena from a multiphase transport model. Sci. China Phys. Mech. 62, 11012 (2018). https://doi.org/10.1007/s11433-018-9272-4

    Article  Google Scholar 

  29. C.M. Ko, F. Li, Density fluctuations in baryon-rich quark matter. Nucl. Sci. Technol. 27, 140 (2016). https://doi.org/10.1007/s41365-016-0141-3

    Article  Google Scholar 

  30. Q.Y. Shou, G.L. Ma, Y.G. Ma, Charge separation with fluctuating domains in relativistic heavy-ion collisions. Phys. Rev. C 90, 047901 (2014). https://doi.org/10.1103/PhysRevC.90.047901

    Article  Google Scholar 

  31. S. Zhang, Y.G. Ma, J.H. Chen et al., Nuclear cluster structure effect on elliptic and triangular flows in heavy-ion collisions. Phys. Rev. C 95, 064904 (2017). https://doi.org/10.1103/PhysRevC.95.064904

    Article  Google Scholar 

  32. F.D. Murnaghan, Review: G. Gamow, constitution of atomic nuclei and radioactivity. Bull. Amer. Math. Soc. 39, 487 (1993)

    Article  Google Scholar 

  33. W.B. He, Y.G. Ma, X.G. Cao et al., Giant dipole resonance as a fingerprint of \(\alpha \) clustering configurations in \(^{12}\text{ C }\) and \(^{16}\text{ O }\). Phys. Rev. Lett. bf 113, 032506 (2014). https://doi.org/10.1103/PhysRevLett.113.032506

    Article  Google Scholar 

  34. W.B. He, Y.G. Ma, X.G. Cao et al., Dipole oscillation modes in light \(\alpha \)-clustering nuclei. Phys. Rev. C 94, 014301 (2016). https://doi.org/10.1103/PhysRevC.94.014301

    Article  Google Scholar 

  35. B.S. Huang, Y.G. Ma, W.B. He, Photonuclear reaction as a probe for \(\alpha \)-clustering nuclei in the quasi-deuteron region. Phys. Rev. C 95, 034606 (2017). https://doi.org/10.1103/PhysRevC.95.034606

    Article  Google Scholar 

  36. B.S. Huang, Y.G. Ma, W.B. He, Alpha-clustering effects on \(^{16}\text{ O }(4\gamma, \text{ np })^{14}\text{ N }\) in quasi-deuteron region. Eur. Phys. J. A 53, 119 (2017)

    Article  Google Scholar 

  37. Z.-W. Lin, C.M. Ko, B.-A. Li et al., Multiphase transport model for relativistic heavy ion collisions. Phys. Rev. C 72, 064901 (2005). https://doi.org/10.1103/PhysRevC.72.064901

    Article  Google Scholar 

  38. G.-L. Ma, Z.-W. Lin, Predictions for \(\sqrt{{s}_\text{ NN }}=5.02\) TeV Pb + Pb collisions from a multiphase transport model. Phys. Rev. C 93, 054911 (2016). https://doi.org/10.1103/PhysRevC.93.054911

    Article  Google Scholar 

  39. Z.-W. Lin, C.M. Ko, S. Pal, Partonic effects on pion interferometry at the relativistic heavy-ion collider. Phys. Rev. Lett. 89, 152301 (2002). https://doi.org/10.1103/PhysRevLett.89.152301

    Article  Google Scholar 

  40. B.I. Abelev, M.M. Aggarwal, Z. Ahammed et al., (STAR Collaboration), System-size independence of directed flow measured at the BNL relativistic heavy-ion collider. Phys. Rev. Lett. 101, 252301 (2008). https://doi.org/10.1103/PhysRevLett.101.252301

    Article  Google Scholar 

  41. A. Bzdak, G.-L. Ma, Elliptic and triangular flow in \(p\)–Pb and peripheral Pb–Pb collisions from parton scatterings. Phys. Rev. Lett. 113, 252301 (2014). https://doi.org/10.1103/PhysRevLett.113.252301

    Article  Google Scholar 

  42. G.-L. Ma, S. Zhang, Y.-G. Ma et al., Di-hadron azimuthal correlation and Mach-like cone structure in a parton/hadron transport model. Phys. Lett. B 641, 362–367 (2006)

    Article  Google Scholar 

  43. X.-H. Jin, J.-H. Chen, Y.-G. Ma, \(\Omega \) and \(\phi \) production in Au + Au collisions at =11.5 and 7.7 GeV in a dynamical quark coalescence model. Nucl. Sci. Technol. 29(2), 54 (2018). https://doi.org/10.1007/s41365-018-0393-1

    Article  Google Scholar 

  44. K. Hattori, X.-G. Huang, Novel quantum phenomena induced by strong magnetic fields in heavy-ion collisions. Nucl. Sci. Technol. 28, 26 (2017)

    Article  Google Scholar 

  45. X.-L. Zhao, Y.-G. Ma, G.-L. Ma, Electromagnetic fields in small systems from a multiphase transport model. Phys. Rev. C 97, 024910 (2018). https://doi.org/10.1103/PhysRevC.97.024910

    Article  Google Scholar 

  46. X.-N. Wang, M. Gyulassy, HIJING: a Monte Carlo model for multiple jet production in \(\text{ pp }\), \(\text{ pA }\), and \(\text{ AA }\) collisions. Phys. Rev. D 44, 3501–3516 (1991). https://doi.org/10.1103/PhysRevD.44.3501

    Article  Google Scholar 

  47. M. Gyulassy, X.-N. Wang, HIJING 1.0: a Monte Carlo program for parton and particle production in high energy hadronic and nuclear collisions. Comput. Phys. Commun. 83, 307 (1994). https://doi.org/10.1016/0010-4655(94)90057-4

    Article  Google Scholar 

  48. B. Zhang, ZPC 1.0.1: a parton cascade for ultrarelativistic heavy ion collisions. Comput. Phys. Commun. 109, 193–206 (1998)

    Article  Google Scholar 

  49. B.-A. Li, C.M. Ko, Formation of superdense hadronic matter in high energy heavy-ion collisions. Phys. Rev. C 52, 2037–2063 (1995). https://doi.org/10.1103/PhysRevC.52.2037

    Article  Google Scholar 

  50. T. Maruyama, K. Niita, A. Iwamoto, Extension of quantum molecular dynamics and its application to heavy-ion collisions. Phys. Rev. C 53, 297–304 (1996). https://doi.org/10.1103/PhysRevC.53.297

    Article  Google Scholar 

  51. S. Zhang, Y.G. Ma, J.H. Chen et al., Collective flows of \(\alpha \)-clustering \(^{12}\text{C} + ^{197}\text{Au}\) by using different flow analysis methods. Eur. Phys. J. A 54, 161 (2018). https://doi.org/10.1140/epja/i2018-12597-y

    Article  Google Scholar 

  52. S.A. Voloshin, A.M. Poskanzer, A. Tang et al., Elliptic flow in the Gaussian model of eccentricity fluctuations. Phys. Lett. B 659, 537–541 (2008). https://doi.org/10.1016/j.physletb.2007.11.043

    Article  Google Scholar 

  53. B. Alver, G. Roland, Collision-geometry fluctuations and triangular flow in heavy-ion collisions. Phys. Rev. C 81, 054905 (2010). https://doi.org/10.1103/PhysRevC.81.054905

    Article  Google Scholar 

  54. R.A. Lacey, R. Wei, J. Jia et al., Initial eccentricity fluctuations and their relation to higher-order flow harmonics. Phys. Rev. C 83, 044902 (2011). https://doi.org/10.1103/PhysRevC.83.044902

    Article  Google Scholar 

  55. Y.G. Ma, W.Q. Shen, Z.Y. Zhu, Collective motions of reverse reaction system in the intermediate energy domain via the quantum molecular dynamics approach. Phys. Rev. C 51, 1029 (1995). https://doi.org/10.1103/PhysRevC.51.1029

    Article  Google Scholar 

  56. L. He, T. Edmonds, Z.-W. Lin et al., Phys. Lett. B 753, 506–510 (2016). https://doi.org/10.1016/j.physletb.2015.12.051

    Article  Google Scholar 

  57. G.-L. Ma, A. Bzdak, Flow in small systems from parton scatterings. Nucl. Phys. A 956, 745–748 (2016). https://doi.org/10.1016/j.nuclphysa.2016.01.057

    Article  Google Scholar 

  58. W.-T. Deng, X.-G. Huang, Vorticity in heavy-ion collisions. Phys. Rev. C 93, 064907 (2016). https://doi.org/10.1103/PhysRevC.93.064907

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Gang Ma.

Additional information

This work was supported in part by National Key R&D Program of China (No. 2016YFE0100900), the National Natural Science Foundation of China (Nos. 11421505, 11220101005, 11775288, and U1232206), the Major State Basic Research Development Program in China (No. 2014CB845400), the Key Research Program of Frontier Sciences of the CAS (No. QYZDJ-SSW-SLH002), and the Key Research Program of the Chinese Academy of Sciences (No. XDPB09).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, ZW., Zhang, S., Ma, YG. et al. Influence of α-clustering nuclear structure on the rotating collision system. NUCL SCI TECH 29, 186 (2018). https://doi.org/10.1007/s41365-018-0523-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0523-9

Keywords

Navigation