Skip to main content
Log in

Radiation dose detection using a high-power portable optically stimulated luminescence real-time reading system

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Optically stimulated luminescence (OSL) reading systems are becoming smaller and capable of real-time detection. To improve real-time and multipurpose radiation dosimetry readings, we built a real-time continuous-wave (RCW) OSL reading system. This system is both small and lightweight, and it employs powerful laser excitation (478 mW/cm2) at the dosimetry probe location. We investigate the possibility of using the RCW mode to read the radiation luminescence (RL) or OSL by using a single-crystal Al2O3:C dosimeter in a low-dose-rate 137Cs γ field. Our results indicate that the RL/OSL follows a stable and uniform distribution. The minimum detected doses associated with the RL, OSL, and RL + OSL signals are 2.1 × 10−2, 3.17 × 10−1, and 5.7 × 10−2 μGy, respectively. This device provides a framework for the future development of applications for practical radiation dose measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H.O. Albrecht, C.E. Mandeville, Storage energy in BeO. Phys. Rev. 101, 1250 (1956). https://doi.org/10.1103/PhysRev.101.1250

    Article  Google Scholar 

  2. M.S. Akselrod, S.W.S. McKeever, A radiation dosimetry method using pulsed optically stimulated luminescence. Radiat. Prot. Dosim. 81, 167–175 (1999). https://doi.org/10.1093/oxfordjournals.rpd.a032583

    Article  Google Scholar 

  3. L. Botter-Jensen, S.W. McKeever, A.G. Wintle, Optically stimulated luminescence (Elsevier Science: BV Publication, Amsterdam, 2003)

    Google Scholar 

  4. S.Y. Lee, K.J. Lee, Development of a personal dosimetry system based on optically stimulated luminescence of α-Al2O3:C for mixed radiation fields. Appl. Radiat. Isot. 54, 675–685 (2001). https://doi.org/10.1016/S0969-8043(00)00302-X

    Article  Google Scholar 

  5. I. Mrčela, T. Bokulić, J. Izewska et al., Optically stimulated luminescence in vivo dosimetry for radiotherapy: physical characterization and clinical measurements in 60Co beams. Phys. Med. Biol. 56, 6065–6082 (2011). https://doi.org/10.1088/0031-9155/56/18/018

    Article  Google Scholar 

  6. M.C. Aznar, C.E. Andersen et al., Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams. Phys. Med. Biol. 49, 1655–1669 (2004). https://doi.org/10.1088/0031-9155/49/9/005

    Article  Google Scholar 

  7. L.F. Nascimento, F. Vanhavere, E. Boogers et al., Medical dosimetry using a RL/OSL prototype. Radiat. Meas. 71, 359–363 (2014). https://doi.org/10.1016/j.radmeas.2014.05.028

    Article  Google Scholar 

  8. C.J. Marckmann, C.E. Andersen et al., Optical fibre dosemeter system for clinical applications based on radioluminescence and optically stimulated luminescence from Al2O3:C. Radiat. Prot. Dosim. 120, 28–32 (2006). https://doi.org/10.1093/rpd/nci506

    Article  Google Scholar 

  9. S. Magne, S. Deloule, A. Ostrowsky et al., Fiber-coupled, time-gated Al2O3:C radioluminescence dosimetry technique and algorithm for radiation therapy with LINACs. IEEE Trans. Nucl. Sci. 60, 2998–3007 (2013). https://doi.org/10.1109/TNS.2013.2263640

    Article  Google Scholar 

  10. A.F. Fernandez, B. Brichard, S. O’Keeffe et al., Real-time fibre optic radiation dosimeters for nuclear environment monitoring around thermonuclear reactors. Fusion Eng. Des. 83, 50–59 (2008). https://doi.org/10.1016/j.fusengdes.2007.05.034

    Article  Google Scholar 

  11. D.M. Klein, E.G. Yukihara, S.W.S. Mckeever et al., In situ long-term monitoring system for radioactive contaminants. Radiat. Prot. Dosim. 119, 421–424 (2006). https://doi.org/10.1093/rpd/nci604

    Article  Google Scholar 

  12. E.G. Yukihara, G.O. Sawakuchi, S. Guduru et al., Application of the optically stimulated luminescence (OSL) technique in space dosimetry. Radiat. Meas. 41, 1126–1135 (2006). https://doi.org/10.1016/j.radmeas.2006.05.027

    Article  Google Scholar 

  13. J. Walling, Optically stimulated luminescence dating of fluvial deposits: a review. Boreas 31, 303–322 (2010). https://doi.org/10.1111/j.1502-3885.2002.tb01076.x

    Article  Google Scholar 

  14. A.R. Beierholm, R.O. Ottosson, L.R. Lindvold et al., Characterizing a pulse-resolved dosimetry system for complex radiotherapy beams using organic scintillators. Phys. Med. Biol. 56, 3033–3045 (2011). https://doi.org/10.1088/0031-9155/56/10/009

    Article  Google Scholar 

  15. T. Teichmann, J. Sponner, C. Jakobi et al., Real time dose rate measurements with fiber optic probes based on the RL and OSL of beryllium oxide. Radiat. Meas. 90, 201–204 (2016). https://doi.org/10.1016/j.radmeas.2016.01.015

    Article  Google Scholar 

  16. R.R. Patil, R. Barve, S.V. Moharil et al., Development of Ag doped crystalline SiO2 for possible application in real-time in vivo OSL dosimetry. Radiat. Meas. 71, 208–211 (2014). https://doi.org/10.1016/j.radmeas.2014.02.009

    Article  Google Scholar 

  17. C.E. Andersen, J.M. Edmund, S.M.S. Damkjar, Precision of RL/OSL medical dosimetry with fiber-coupled Al2O3:C influence of readout delay and temperature variations. Radiat. Meas. 45, 653–657 (2010). https://doi.org/10.1016/j.radmeas.2009.11.047

    Article  Google Scholar 

  18. P.A. Jursinic, Characterization of optically stimulated luminescent dosimeter, OSLDs, for clinical dosimetric measurements. Med. Phys. 34, 4594–4604 (2007). https://doi.org/10.1118/1.2804555

    Article  Google Scholar 

  19. Y.P. Liu, Z.Y. Chen, W.Z. Bai et al., A study on the real-time radiation dosimetry measurement system based on optically stimulated luminescence. Chin. Phys. C 32, 381–384 (2008). https://doi.org/10.1088/1674-1137/32/5/011

    Article  Google Scholar 

  20. C.J. Marckmann, C.E. Andersen, M.C. Aznar et al., Optical fibre dosemeter systems for clinical applications based on radioluminescence and optically stimulated luminescence from Al2O3:C. Radiat. Prot. Dosim. 120, 28–32 (2006). https://doi.org/10.1093/rpd/nci506

    Article  Google Scholar 

  21. S.W.S. McKeever, Optically stimulated luminescence dosimetry. Nucl. Instrum. Methods Phys. Res. B 184, 29–54 (2001). https://doi.org/10.1016/S0168-583X(01)00588-2

    Article  Google Scholar 

  22. R. Gaza, S.W.S. McKeever, M.S. Akselrod, Near-real-time radiotherapy dosimetry using optically stimulated luminescence of Al2O3:C mathematical models and preliminary results. Med. Phys. 32, 1094–1102 (2005). https://doi.org/10.1118/1.1884365

    Article  Google Scholar 

  23. N.S. Rawat, B. Dhabekar, M.S. Kulkarni et al., Optimization of CW-OSL parameters for improved dose detection threshold in Al2O3:C. Radiat. Meas. 71, 212–216 (2014). https://doi.org/10.1016/j.radmeas.2014.02.013

    Article  Google Scholar 

  24. X.B. Yang, H.J. Li, Q.Y. Bi et al., Growth of α-Al2O3:C crystal with highly sensitive optically stimulated luminescencce. J. Lumin. 129, 566–569 (2009). https://doi.org/10.1016/j.jlumin.2008.12.015

    Article  Google Scholar 

  25. M.S. Kulkarni, D.R. Mishra, K.P. Muthe et al., An alternative method of preparation of dosimetric grade α-Al2O3:C by vacuum-assisted post-growth thermal impurification technique. Radiat. Meas. 39, 277–282 (2005). https://doi.org/10.1016/j.radmeas.2004.03.005

    Article  Google Scholar 

  26. M.S. Akselrod, V.S. Kortov, D.J. Kravetsky et al., Highly sensitive thermoluminescent anion-defect α-Al2O3: C single crystal detectors. Radiat. Prot. Dosim. 33, 119–122 (1990). https://doi.org/10.1093/oxfordjournals.rpd.a080715

    Article  Google Scholar 

  27. K.H. Lee, J.H. Crawford, Luminescence of the F center in sapphire. Phys. Rev. B 19, 3217–3221 (1979). https://doi.org/10.1103/PhysRevB.19.3217

    Article  Google Scholar 

  28. K.P. Muthe, M.S. Kulkarni, N.S. Rawat et al., Melt processing of alumina in graphite ambient for dosimetric applications. J. Lumin. 128, 445–450 (2008). https://doi.org/10.1016/j.jlumin.2007.09.013

    Article  Google Scholar 

  29. M.G. Rodriguez, G. Denis, M.S. Akselrod et al., Thermoluminescence, optically stimulated luminescence and radioluminescence properties of Al2O3:C:Mg. Radiat. Meas. 46, 1469–1473 (2011). https://doi.org/10.1016/j.radmeas.2011.04.026

    Article  Google Scholar 

  30. B.D. Evans, M. Stapelbroek, Optical properties of the F+ center in crystalline Al2O3. Phys. Rev. B 18, 7089 (1978). https://doi.org/10.1103/PhysRevB.18.7089

    Article  Google Scholar 

  31. J.C. Polf, S.W.S. McKeever, M.S. Akselrod et al., A real-time, Fibre optic dosimetry system using Al2O3 fibres. Radiat. Prot. Dosim. 100(1–4), 301–304 (2002). https://doi.org/10.1093/oxfordjournals.rpd.a005873

    Article  Google Scholar 

  32. W.G. West, K.J. Kearfott, S.M. Bernal, The sunlight OSL response of a commercially available α-Al2O3:C personnel dosimetry material. Radiat. Prot. Dosim. 119, 344–349 (2006). https://doi.org/10.1093/rpd/nci691

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the ZheJiang Jia Lai photon technology company for assembling this reading system and providing the picture and reference structure diagram shown in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tai-Ping Peng.

Additional information

This work was supported by the International Fusion Reactor Experiment Program (No. 2014GB112004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YH., Chen, H., Chen, F. et al. Radiation dose detection using a high-power portable optically stimulated luminescence real-time reading system. NUCL SCI TECH 29, 149 (2018). https://doi.org/10.1007/s41365-018-0484-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0484-z

Keywords

Navigation