Skip to main content

Advertisement

Log in

Optimization study on neutron spectrum unfolding based on the least-squares method

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The response functions and pulse height spectrum (PHS) of a 2″ × 2″ BC501A detector were obtained through a general-purpose Monte Carlo simulation toolkit, Geant4. A relatively simple but effective method was adopted to unfold the PHS. Recommendations regarding the response matrix were proposed to optimize the unfolding results. The results indicate that the accuracy of the unfolding can be greatly improved using many incident neutrons with a wide energy range, a proper energy interval, and an appropriate channel width of the response matrix. The above-mentioned method was verified by unfolding three different types of simulated spectrum, the results of which are in good accord with the simulated distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F.D. Brooks, H. Klein, Neutron spectrometry—historical review and present status. J. Nucl. Instrum. Methods 476, 1–11 (2002). https://doi.org/10.1016/S0168-9002(01)01378-X

    Article  Google Scholar 

  2. M.J. Coolbaugh, R.E. Faw, W. Meyer, Fast Neutron Spectroscopy in Aqueous Media Using an NE-213 Proton-Recoil Neutron Spectrometer System (Department of Nuclear Engineering (US), COO-2049-7, 1971)

  3. X.F. Xie, X. Yuan, X. Zhang et al., Calibration and unfolding of the pulse height spectra of liquid scintillator-based neutron detectors using photon sources. J. Plasma Sci. Technol. 14, 553–557 (2012). https://doi.org/10.1008/1009-0630/14/6/27

    Article  Google Scholar 

  4. M. Reginatto, P. Goldhagen, S. Neumann, Spectrum unfolding, sensitivity analysis and propagation of uncertainties with the maximum entropy deconvolution code MAXED. J. Nucl. Instrum. Methods 476, 242–246 (2002). https://doi.org/10.1016/S0168-9002(01)01439-5

    Article  Google Scholar 

  5. T. Adye, Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding (CERN, Geneva, 17–20 Jan 2011)

  6. Y.H. Chen, X.M. Chen, J.R. Lei et al., Unfolding the fast neutron spectra of a BC501A liquid scintillation detector using GRAVEL method. J. Sci. China Phys. Mech. Astron. 57, 1885–1890 (2014). https://doi.org/10.1007/s11433-014-5553-7

    Article  Google Scholar 

  7. A. Hocker, V. Kartvelishvili, SVD approach to data unfolding. J. Nucl. Instrum. Methods A 372, 469–481 (1996). https://doi.org/10.1016/0168-9002(95)01478-0

    Article  Google Scholar 

  8. X. Wang, H. Zhang, Z. Wu et al., Development of spectrum unfolding code for multi-sphere neutron spectrometer using genetic algorithms. J. Nucl. Sci. Tech. 25, 36–41 (2014). https://doi.org/10.13538/j.1001-8042/nst.25.S010503

    Google Scholar 

  9. A.S. Ido, M.R. Bonyadi, G.R. Etaati et al., Unfolding the neutron spectrum of a NE213 scintillator using artificial neural networks. J. Appl. Radiat. Isotopes 67, 1912–1918 (2009). https://doi.org/10.1016/j.apradiso.2009.05.020

    Article  Google Scholar 

  10. J. Yan, R. Liu, C. Li et al., Application of artificial neural networks for unfolding neutron spectra by using a scintillation detector. Sci. China Phys. Mech. Astron. 54, 465–469 (2011). https://doi.org/10.1007/s11433-011-4258-4

    Article  Google Scholar 

  11. Q.J. Zhu, L.C. Tian, X.H. Yang et al., Advantages of artificial neural network in neutron spectra unfolding. J. Chin. Phys Lett. 31, 69–72 (2014). https://doi.org/10.1088/0256-307X/31/7/072901

    Google Scholar 

  12. J. Půlpán, M. Králík, The unfolding of neutron spectra based on the singular value decomposition of the response matrix. J. Nucl. Instrum. Methods 325, 314–318 (1993). https://doi.org/10.1016/0168-9002(93)91032-I

    Article  Google Scholar 

  13. J. Wang, X.L. Lu, Y. Yan et al., Study on the unfolding algorithm for D-T neutron energy spectra measurement using recoil proton method. J. Chin. Phys. C (2014). https://doi.org/10.1088/1674-1137/39/7/076201

    Google Scholar 

  14. S.A. Pozzi, E. Padovani, M. Marseguerra, MCNP-PoliMi: a Monte-Carlo code for correlation measurements. J. Nucl. Instrum. Methods 513, 550–558 (2003). https://doi.org/10.1016/j.nima.2003.06.012

    Article  Google Scholar 

  15. M. Asai, Geant4—a simulation toolkit. Nucl. Instrum. Methods 506, 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  Google Scholar 

  16. R.E. Textor, V.V. Verbinski, R.E. Textor et al., O5S: A Monte Carlo Code for Calculating Pulse Height Distributions Due TO Monoenergetic Neutrons Incident on Organic Scintillators (Oak Ridge National Lab, ORNL-4160, 1967)

  17. J.K. Dickens, SCINFUL: A Monte Carlo Based Computer Program to Determine a Scintillator Full Energy Response to Neutron Detection for En between 0. 1 and 80 MeV: User’s Manual and FORTRAN Program Listing (Oak Ridge National Lab. ORNL-6463, 1988)

  18. G. Dietze, H. Klein, NRESP4 and NEFF4-Monte Carlo Codes for the Calculation of Neutron Response Functions and Detection Efficiencies for NE213 Scintillation Detectors (PTB-ND-22, Braunschweig, 1982)

  19. G.F. Knoll, Radiation Detection and Measurements, 3rd edn. (Wiley, New York, 1979), pp. 537–573

    Google Scholar 

  20. F. Gagnon-Moisan, M. Reginatto, A. Zimbal, Results for the response function determination of the compact neutron spectrometer. J. Instrum. 7, 55–61 (2012). https://doi.org/10.1088/1748-0221/7/03/C03023

    Article  Google Scholar 

  21. R.A. Cecil, B.D. Anderson et al., Improved Predictions of neutron detection efficiency for hydrocarbon scintillators from 1 MeV to about 300 MeV. J. Nucl. Instrum. Methods 161, 439–447 (1979). https://doi.org/10.1016/0029-554X(79)90417-8

    Article  Google Scholar 

  22. N. Patronis, M. Kokkoris, D. Giantsoudi et al., Aspects of GEANT4 Monte-Carlo calculations of the BC501A neutron detector. J. Nucl. Instrum. Methods 578, 351–355 (2007). https://doi.org/10.1016/j.nima.2007.05.151

    Article  Google Scholar 

  23. G. Jaworski, M. Palacz, J. Nyberg et al., Monte Carlo simulation of a single detector unit for the neutron detector array NEDA. Nucl. Instrum. Methods 673, 64–72 (2012). https://doi.org/10.1016/j.nima.2012.01.017

    Article  Google Scholar 

  24. X.H. Wang, T. He, H. Guo et al., Neutron response functions and detection efficiency of a spherical proton recoil proportional counter. Nucl. Sci. Tech. 21, 330–333 (2010). https://doi.org/10.13538/j.1001-8042/nst.21.330-333

    Google Scholar 

  25. S. Schmitt, TUnfold: an algorithm for correcting migration effects in high energy physics. J. Instrum. 7, T10003 (2012). https://doi.org/10.1088/1748-0221/7/10/T10003

    Article  Google Scholar 

  26. International Organization for Standardization. Reference neutron radiations-Part I: Characteristics and Methods Of Production (ISO 8529-1, 2000)

Download references

Acknowledgements

The authors would like to thank Stefan Schmitt for his useful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Hu Song.

Additional information

This work was supported by the Funding Agency ITER (No. 2014GB11204).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, HH., Yuan, YG., Peng, TP. et al. Optimization study on neutron spectrum unfolding based on the least-squares method. NUCL SCI TECH 29, 118 (2018). https://doi.org/10.1007/s41365-018-0454-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0454-5

Keywords

Navigation