Advertisement

Identification of the unknown shielding parameters with gamma-ray spectrum using a derivative-free inverse radiation transport model

  • Ying Chen
  • Lian-Ping Zhang
  • Sa Xiao
  • Lun-Qiang Wu
  • Shan-Li Yang
  • Bing-Yuan Xia
  • Jian-Min Hu
Article
  • 44 Downloads

Abstract

Identifying the unknown geometric and material information of a multi-shield object by analyzing the radiation signature measurements is always an important problem in national and global security. In order to identify the unknown shielding layer thicknesses of a source/shield system with gamma-ray spectra, we have developed a derivative-free inverse radiation transport model based on a differential evolution algorithm with global and local neighbourhoods (IRT-DEGL). In the present paper, the IRT-DEGL model is further extended for estimating the unknown thicknesses with random initial guesses and material mass densities of multi-shielding layers as well as their combinations. Using the detected gamma-ray spectra, the illustration of inverse studies is implemented and the main influence factors for inverse results are also analyzed.

Keywords

Inverse problem Derivative-free inverse radiation transport model Gamma-ray spectrum Multi-shielding layers 

References

  1. 1.
    G.R. Gilmore, Practical Gamma-Ray Spectrometry, 2nd edn. (Wiley, Chichester, 2008).  https://doi.org/10.1002/9780470861981 CrossRefGoogle Scholar
  2. 2.
    N.J. McCormick, Inverse radiative transport problems: a review. Nucl. Sci. Eng. 112, 185–198 (1992)CrossRefGoogle Scholar
  3. 3.
    J.A. Favorite, K.C. Bledsoe, Using the Levenberg–Marquardt method for the solution of inverse transport problems. Trans. Am. Nucl. Soc. 95, 527 (2006)Google Scholar
  4. 4.
    J. Mattingly, D.J. Mitchell, A framework for the solution of inverse radiation transport problems. IEEE Trans. Nucl. Sci. 57, 3734–3743 (2010).  https://doi.org/10.1109/NSSMIC.2008.4774636 Google Scholar
  5. 5.
    J.A. Favorite, K.C. Bledsoe, Identification of an unknown material in a radiation shield using the schwinger inverse method. Nucl. Sci. Eng. 152, 106–117 (2006)CrossRefGoogle Scholar
  6. 6.
    K.C. Bledsoe, J.A. Favorite, T. Aldemir, Application of the differential evolution method to solving inverse transport problems. Nucl. Sci. Eng. 169, 208–211 (2011)CrossRefGoogle Scholar
  7. 7.
    K.C. Bledsoe, J.A. Favorite, T. Aldemir, Using the Levenberg–Marquardt method for solutions of inverse transport problems in one- and two-dimensional geometries. Nucl. Technol. 176, 106–126 (2011)CrossRefGoogle Scholar
  8. 8.
    J.C. Armstrong, J.A. Favorite, Identification of unknown interface locations in a source/shield system using the mesh adaptive direct search method. Trans. Am. Nucl. Soc. 107, 375–377 (2012)Google Scholar
  9. 9.
    S.J. Norton, A general nonlinear inverse transport algorithm using forward and adjoint flux computations. IEEE Trans. Nucl. Sci. 44, 153–162 (1997).  https://doi.org/10.1109/23.568797 CrossRefGoogle Scholar
  10. 10.
    K.C. Bledsoe, J.A. Favorite, Using the Marquardt method for solution of inverse transport problems in two-dimensional cylinders. Trans. Am. Nucl. Soc. 98, 591 (2008)Google Scholar
  11. 11.
    J. Mattingly, D.J. Mitchell, Implementation and testing of a multivariate inverse radiation transport solver. Appl. Radiat. Isotopes 70, 1136–1140 (2012).  https://doi.org/10.1016/j.apradiso.2011.10.020 CrossRefGoogle Scholar
  12. 12.
    K.C. Bledsoe, J.A. Favorite, T. Aldemir, A comparison of the covariance matrix adaptation evolution strategy and the Levenberg–Marquardt method for solving multidimensional inverse transport problems. Ann. Nucl. Eng. 38, 897–904 (2011).  https://doi.org/10.1016/j.anucene.2010.09.014 CrossRefGoogle Scholar
  13. 13.
    K.C. Bledsoe, Inverse methods for radiation transport. Ph.D Thesis, Ohio State University (2009)Google Scholar
  14. 14.
    S. Das, A. Abraham, U.K. Chakraborty et al., Differential evolution using a neighborhood-based mutation operator. IEEE Trans. Evol. Comput. 3, 526–553 (2009).  https://doi.org/10.1109/TEVC.2008.2009457 CrossRefGoogle Scholar
  15. 15.
    P.N. Suganthan, Differential evolution algorithm: recent advances. Lect. Notes Comput. Sci. 7505, 47–56 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Y. Chen, L.P. Zhang, X. Sai et al., An enhanced differential evolution-based inverse radiation transport model for identification of unknown shielding layer thicknesses with gamma-ray spectrum. Nucl. Sci. Technol. 28, 84 (2017).  https://doi.org/10.1007/s41365-017-0231-x CrossRefGoogle Scholar
  17. 17.
    Mcnp-a gereral monte carlo n-particle transport code, version 5. X-5 Monte Carlo Team, LA-CP-03-0245, Los Alamos National Laboratory (2003)Google Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Ying Chen
    • 1
  • Lian-Ping Zhang
    • 1
  • Sa Xiao
    • 1
  • Lun-Qiang Wu
    • 1
  • Shan-Li Yang
    • 1
  • Bing-Yuan Xia
    • 1
  • Jian-Min Hu
    • 1
  1. 1.Institute of materialsChina Academy of Engineering PhysicsMianyangChina

Personalised recommendations