Skip to main content
Log in

Shielding effectiveness of boron-containing ores in Liaoning province of China against gamma rays and thermal neutrons

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

In this study, the mass attenuation coefficient of boron-containing ores in the Liaoning province of China was calculated using WinXCOM software to investigate the shielding effectiveness of these ores against gamma rays. The mass attenuation coefficients were also calculated using MCNP-4B code and compared with WinXCOM results; consequently, a good consistency between the results of WinXCOM and MCNP-4B was observed. Furthermore, the G-P fitting method was used to evaluate the values of exposure buildup factor (EBF) in the energy range of 0.015–15 MeV up to 40 mean free paths. Among the selected ores, boron-bearing iron concentrate ore (M3) was determined to be the best gamma ray shielding ore owing to its higher values of mass attenuation coefficient and equivalent atomic number and lower value of EBF. Moreover, American Evaluated Nuclear Data File (ENDF/B-VII) was used to analyze the shielding effectiveness against thermal neutrons. It was determined that Szaibelyite (M2) is the best thermal neutron shielding material. This study would be useful for demonstrating the potential of boron-containing ores for applications in the field of nuclear engineering and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. An, X.X. Xue, Life cycle environmental impact assessment of borax and boric acid production in China. J. Clean. Prod. 66, 121–127 (2014). https://doi.org/10.1016/j.jclepro.2013.10.020

    Article  Google Scholar 

  2. G. Wang, Q.G. Xue, J.S. Wang, Effect of Na2CO3 on reduction and melting separation of Ludwigite/coal composite pellet and property of boron-rich slag. Trans. Nonferrous Met. Soc. 26, 282–293 (2016). https://doi.org/10.1016/S1003-6326(16)64116-X

    Article  Google Scholar 

  3. G. Wang, Y.G. Ding, J.S. Wang et al., Effect of carbon species on the reduction and melting behavior of boron-bearing iron concentrate/carbon composite pellets. Int. J. Min. Met. Mater. 20, 522–528 (2013). https://doi.org/10.1007/s12613-013-0760-1

    Article  Google Scholar 

  4. X. Ma, H. Ma, X. Jiang et al., Preparation of magnesium hydroxide nanoflowers from boron mud via anti-drop precipitation method. Mater. Res. Bull. 56, 113–118 (2014). https://doi.org/10.1016/j.materresbull.2014.04.021

    Article  Google Scholar 

  5. Z.F. Li, X.X. Xue, T. Jiang et al., Study on the properties of boron containing ores/epoxy composites for slow neutron shielding. Adv. Mater. Res. 201–203, 2767–2771 (2011). https://doi.org/10.4028/www.scientific.net/AMR.201-203.2767

    Article  Google Scholar 

  6. Z.F. Li, X.X. Xue, P.N. Duan et al., Preparation and thermal/fast neutron shielding properties of novel boron containing ore composites. Mater. Sci. Forum 743–744, 613–622 (2013). https://doi.org/10.4028/www.scientific.net/MSF.743-744.613

    Article  Google Scholar 

  7. Z.F. Li, X.X. Xue, S.L. Liu et al., Effects of boron number per unit volume on the shielding properties of composites made with boron ores from China. Nucl. Sci. Tech. 23, 344–348 (2012). https://doi.org/10.13538/j.1001-8042/nst.23.344-348

    Google Scholar 

  8. J.C. Khong, D. Daisenberger, G. Burca et al., Design and characterisation of metallic glassy alloys of high neutron shielding capability. Sci. Rep. 6, 36998 (2016). https://doi.org/10.1038/srep36998

    Article  Google Scholar 

  9. V.P. Singh, N.M. Badiger, γ-ray interaction characteristics for some boron containing materials. Vacuum 113, 24–27 (2015). https://doi.org/10.1016/j.vacuum.2014.11.011

    Article  Google Scholar 

  10. V.P. Singh, N.M. Badiger, N. Chanthima et al., Evaluation of gamma-ray exposure buildup factors and neutron shielding for bismuth borosilicate glasses. Radiat. Phys. Chem. 98, 14–21 (2014). https://doi.org/10.1016/j.radphyschem.2013.12.029

    Article  Google Scholar 

  11. M. Kurudirek, Radiation shielding and effective atomic number studies in different types of shielding concretes, lead base and non-lead base glass systems for total electron interaction: a comparative study. Nucl. Eng. Des. 280, 440–448 (2014). https://doi.org/10.1016/j.nucengdes.2014.09.020

    Article  Google Scholar 

  12. M.I. Sayyed, Bismuth modified shielding properties of zinc boro-tellurite glasses. J. Alloys Compd. 688, 111–117 (2016). https://doi.org/10.1016/j.jallcom.2016.07.153

    Article  Google Scholar 

  13. M.I. Sayyed, S.I. Quashu, Z.Y. Khattari, Radiation shielding competence of newly developed TeO2-WO3 glasses. J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.11.160

    Google Scholar 

  14. M.I. Sayyed, Half value layer, mean free path and exposure buildup factor for tellurite glasses with different oxide compositions. J. Alloys Compd. 695, 3191–3197 (2017). https://doi.org/10.1016/j.jallcom.2016.11.318

    Article  Google Scholar 

  15. M. Kurudirek, D. Sardari, N. Khaledi et al., Investigation of X- and gamma ray photons buildup in some neutron shielding materials using GP fitting approximation. Ann. Nucl. Energy 53, 485–491 (2013). https://doi.org/10.1016/j.anucene.2012.08.002

    Article  Google Scholar 

  16. U. Fano, Gamma-ray attenuation. Part II—analysis of penetration. Minerva Med. 11, 55–61 (1953)

    Google Scholar 

  17. ANSI/ANS-6.4.3, Gamma ray attenuation coefficient and buildup factors for engineering materials (1991)

  18. Y. Harima, Y. Sakamoto, S. Tanka et al., Validity of geometric progression formula in approximating gamma ray buildup factor. Nucl. Sci. Eng. 94, 24–25 (1986)

    Article  Google Scholar 

  19. Y. Harima, An historical review and current status of buildup factor calculations and application. Radiat. Phys. Chem. 41, 631–672 (1993). https://doi.org/10.1016/0969-806X(93)90317-N

    Article  Google Scholar 

  20. M.B. Chadwick, M. Herman, P. Obložinský et al., ENDF/B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nucl. Data Sheets 112, 2887–2996 (2011). https://doi.org/10.1016/j.nds.2011.11.002

    Article  Google Scholar 

  21. G. Ilas, I.C. Gauld, G. Radulescu, Validation of new depletion capabilities and ENDF/B-VII data libraries in Scale. Ann. Nucl. Energy 46, 43–55 (2012). https://doi.org/10.1016/j.anucene.2012.03.012

    Article  Google Scholar 

  22. M.J. Berger, J.H. Hubbell, XCOM: photon cross sections database, Web Version 3.1. http://physics.nist.gov/xcom, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA, 1987/99. Originally published as NBSIR 87-3597 “XCOM: Photon Cross Sections on a Personal Computer”

  23. M.G. Dong, X.X. Xue, H. Yang et al., A novel comprehensive utilization of vanadium slag: as gamma ray shielding material. J. Hazard. Mater. 318, 751–757 (2016). https://doi.org/10.1016/j.jhazmat.2016.06.012

    Article  Google Scholar 

  24. M. Kurudirek, M. Aygun, S.Z. Erzeneoglu, Chemical composition, effective atomic number and electron density study of trommel sieve waste (TSW), Portland cement, lime, pointing and their admixtures with TSW in different proportions. App. Radiat. Isot. 68, 1006–1011 (2010). https://doi.org/10.1016/j.apradiso.2009.12.039

    Article  Google Scholar 

  25. S.M. Kulwinder, S.S. Gurdeep, Verification of some low-Z silicates as gamma-ray shielding materials. Ann. Nucl. Energy 40, 241–252 (2012). https://doi.org/10.1016/j.anucene.2011.09.015

    Article  Google Scholar 

  26. Y. Elmahroug, B. Tellili, C. Souga, Determination of total mass attenuation coefficients, effective atomic numbers and electron densities for different shielding materials. Ann. Nucl. Energy 75, 268–274 (2015). https://doi.org/10.1016/j.anucene.2014.08.015

    Article  Google Scholar 

  27. M.I. Sayyed, H. Elhouichet, Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for boro-tellurite (B2O3–TeO2) glasses. Radiat. Phys. Chem. 130, 335–342 (2017). https://doi.org/10.1016/j.radphyschem.2016.09.019

    Article  Google Scholar 

  28. H.S. Chen, W.X. Wang, Y.L. Li et al., The design, microstructure and tensile properties of B4C particulate reinforced 6061Al neutron absorber composites. J. Alloys Compd. 632, 23–29 (2015). https://doi.org/10.1016/j.jallcom.2015.01.048632:23-29

    Article  Google Scholar 

  29. V.F. Sears, Neutron scattering lengths and cross sections. Neutron News. 3, 26–37 (2006). https://doi.org/10.1080/10448639208218770

    Article  Google Scholar 

  30. T. Özdemir, İ.K. Akbay, H. Uzun et al., Neutron shielding of EPDM rubber with boric acid: mechanical, thermal properties and neutron absorption tests. Prog. Nucl. Energy 89, 102–109 (2016). https://doi.org/10.1016/j.pnucene.2016.02.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Xin Xue.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 51472048, 50774022) and the Key Laboratory Project of Liaoning Province Education Office (No. LZ 2014-022).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, MG., Xue, XX., Singh, V.P. et al. Shielding effectiveness of boron-containing ores in Liaoning province of China against gamma rays and thermal neutrons. NUCL SCI TECH 29, 58 (2018). https://doi.org/10.1007/s41365-018-0397-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0397-x

Keywords

Navigation