Skip to main content
Log in

Ω and ϕ production in Au + Au collisions at \(\sqrt{s_{_\mathrm{NN}}} = 11.5\)  and 7.7 GeV in a dynamical quark coalescence model

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The Ω and ϕ production in relativistic heavy-ion collisions is studied in a dynamical quark coalescence model using the phase space information of strange quarks from a multiphase transport (AMPT) model. Enhanced local parton density fluctuation is implemented in the AMPT to simulate the QCD phase transition dynamics. By studying the transverse momentum \(p_{\rm T}\) spectra and the elliptic flow of the multi-strangeness particles, such as Ω and ϕ, and the \(\Omega /\phi \) ratio as a function of \(p_{\rm T}\) in the AMPT, we find that the new development improves the description of experimental data. The study motivates further experimental investigations of Ω and ϕ production in phase II of the Beam Energy Scan program at RHIC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.M. Aggarwal et al., arXiv:1007.2613

  2. Y. Aoki, G. Endrodi, Z. Fodor et al., The order of the quantum chromodynamics transition predicted by the standard model of particle physics. Nature 443, 675 (2006). https://doi.org/10.1038/nature05120

    Article  Google Scholar 

  3. P. de Forcrand, O. Philipsen, The QCD phase diagram for small densities from imaginary chemical potential. Nucl. Phys. B 642, 290 (2002). https://doi.org/10.1016/S0550-3213(02)00626-0

    Article  MATH  Google Scholar 

  4. Z. Fodor, S.D. Katz, Critical point of QCD at finite \(T\) and \(\mu \), lattice results for physical quark masses. J. High Energy Phys. 4, 50 (2004). https://doi.org/10.1088/1126-6708/2004/04/050

    Article  Google Scholar 

  5. G.Y. Shao, X.Y. Gao, Z.D. Tang et al., QCD phase diagram with the improved Polyakov loop effective potential. Nucl. Sci. Tech. 27, 151 (2016). https://doi.org/10.1007/s41365-016-0152-0

    Article  Google Scholar 

  6. L. Adamczyk et al. (STAR Collaboration), Energy dependence of moments of net-proton multiplicity distributions at RHIC. Phys. Rev. Lett. 112, 032302 (2014). https://doi.org/10.1103/PhysRevLett.112.032302

    Article  Google Scholar 

  7. L. Adamczyk et al. (STAR Collaboration), Beam energy dependence of moments of the net-charge multiplicity distributions in Au + Au collisions at RHIC. Phys. Rev. Lett. 113, 092301 (2014). https://doi.org/10.1103/PhysRevLett.113.092301

    Article  Google Scholar 

  8. L. Adamczyk et al. (STAR Collaboration), Energy dependence of \(K\pi \), \(p\pi \) and \(Kp\) fluctuations in Au + Au collisions from \(\sqrt{s_{_{\rm NN}}}\) = 7.7 to 200 GeV. Phys. Rev. C 92, 021901(R) (2015). https://doi.org/10.1103/PhysRevC.92.021901

    Article  Google Scholar 

  9. X.F. Luo, N. Xu, Search for the QCD critical point with fluctuations of conserved quantities in relativistic heavy-ion collisions at RHIC. Nucl. Sci. Tech. 28, 112 (2017). https://doi.org/10.1007/s41365-017-0257-0

    Article  Google Scholar 

  10. J. Steinhermer, J. Randrup, Spinodal density enhancements in simulations of relativistic nuclear collisions. Phys. Rev. C 87, 054903 (2013). https://doi.org/10.1103/PhysRevC.87.054903

    Article  Google Scholar 

  11. J. Steinhermer, J. Randrup, V. Koch, Non-equilibrium phase transition in relativistic nuclear collisions: Importance of the equation of state. Phys. Rev. C 89, 034901 (2014). https://doi.org/10.1103/PhysRevC.89.034901

    Article  Google Scholar 

  12. F. Li, C.M. Ko, Spinodal instabilities of baryon-rich quark-gluon plasma in the Polyakov–Nambu–Jona-Lasinio model. Phys. Rev. C 93, 035205 (2016). https://doi.org/10.1103/PhysRevC.93.035205

    Article  Google Scholar 

  13. C.M. Ko, F. Li, Density fluctuations in baryon-rich quark matter. Nucl. Sci. Tech. 27, 140 (2016). https://doi.org/10.1007/s41365-016-0141-3

    Article  Google Scholar 

  14. F. Li, C.M. Ko, Spinodal instabilities of baryon-rich quark matter in heavy ion collisions. Phys. Rev. C 95, 055203 (2017). https://doi.org/10.1103/PhysRevC.95.055203

    Article  Google Scholar 

  15. K.J. Sun, L.W. Chen, C.M. Ko et al., Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions. Phys. Lett. B 774, 103 (2017). https://doi.org/10.1016/j.physletb.2017.09.056

    Article  Google Scholar 

  16. L. Adamczyk et al. (STAR Collaboration), Beam-energy dependence of the directed flow of protons, antiprotons, and pions in Au + Au collisions. Phys. Rev. Lett. 112, 162301 (2014). https://doi.org/10.1103/PhysRevLett.112.162301

    Article  Google Scholar 

  17. S.V. Afanasiev et al. (NA49 Collaboration), Energy dependence of pion and kaon production in central Pb + Pb collisions. Phys. Rev. C 66, 054902 (2002). https://doi.org/10.1103/PhysRevC.66.054902

    Article  Google Scholar 

  18. C. Alt et al. (NA49 Collaboration), Pion and kaon production in central Pb + Pb collisions at 20\(A\) and 30\(A\) GeV: evidence for the onset of deconfinement. Phys. Rev. C 77, 024903 (2008). https://doi.org/10.1103/PhysRevC.77.024903

    Article  Google Scholar 

  19. J. Adams et al. (STAR Collaboration), Scaling properties of hyperon production in Au + Au collisions at \(\sqrt{s_{_{\rm NN}}}\) = 200 GeV. Phys. Rev. Lett. 98, 062301 (2007). https://doi.org/10.1103/PhysRevLett.98.062301

    Article  Google Scholar 

  20. B.I. Abelev et al. (STAR Collaboration), Energy and system size dependence of ϕ meson production in Cu + Cu and Au + Au collisions. Phys. Lett. B 673, 183 (2009). https://doi.org/10.1016/j.physletb.2009.02.037

    Article  Google Scholar 

  21. B.I. Abelev et al. (STAR Collaboration), Observation of an antimatter hypernucleus. Science 328, 58 (2010). https://doi.org/10.1126/science.1183980

    Article  Google Scholar 

  22. S. Zhang, J.H. Chen, D. Keane et al., Searching for onset of deconfinement via hypernuclei and baryon-strangeness correlations. Phys. Lett. B 684, 224 (2010). https://doi.org/10.1016/j.physletb.2010.01.034

    Article  Google Scholar 

  23. P. Liu, J.H. Chen, Y.G. Ma et al., Production of light nuclei and hypernuclei at high intensity accelerator facility energy region. Nucl. Sci. Tech. 28, 55 (2017). https://doi.org/10.1007/s41365-017-0207-x

    Article  Google Scholar 

  24. K. Hattori, X.G. Huang, Novel quantum phenomena induced by strong magnetic fields in heavy-ion collisions. Nucl. Sci. Tech. 28, 26 (2017). https://doi.org/10.1007/s41365-016-0178-3

    Article  Google Scholar 

  25. J. Tian, J.H. Chen, Y.G. Ma et al., Breaking of the number-of-constituent-quark scaling for identified-particle elliptic flow as a signal of phase change in low-energy data taken at the BNL Relativistic Heavy Ion Collider (RHIC). Phys. Rev. C 79, 067901 (2009). https://doi.org/10.1103/PhysRevC.79.067901

    Article  Google Scholar 

  26. L. Adamczyk et al. (STAR Collaboration), Observation of an energy-dependent difference in elliptic flow between particles and antiparticles in relativistic heavy ion collisions. Phys. Rev. Lett. 110, 142301 (2013). https://doi.org/10.1103/PhysRevLett.110.142301

    Article  Google Scholar 

  27. L. Adamczyk et al. (STAR Collaboration), Centrality and transverse momentum dependence of elliptic flow of multistrange hadrons and ϕ meson in Au + Au collisions at \(\sqrt{s_{_{\rm NN}}}\) = 200 GeV. Phys. Rev. Lett. 116, 062301 (2016). https://doi.org/10.1103/PhysRevLett.116.062301

    Article  Google Scholar 

  28. L. Adamczyk et al. (STAR Collaboration), Probing parton dynamics of QCD matter with Ω and ϕ production. Phys. Rev. C 93, 021903(R) (2016). https://doi.org/10.1103/PhysRevC.93.021903

    Article  Google Scholar 

  29. J.H. Chen, F. Jin, D. Gangadharan et al., Parton distributions at hadronization from bulk dense matter produced in Au + Au collisions at \(\sqrt{s_{\rm NN}}\) = 200 GeV. Phys. Rev. C 78, 034907 (2008). https://doi.org/10.1103/PhysRevC.78.034907

    Article  Google Scholar 

  30. Y.J. Ye, J.H. Chen, Y.G. Ma et al., Ω and ϕ in Au + Au collisions at \(\sqrt{s_{_{\rm NN}}}\) = 200 and 11.5 GeV from a multiphase transport model. Chin. Phys. C 41, 084101 (2017). https://doi.org/10.1088/1674-1137/41/8/084101

    Article  Google Scholar 

  31. H. van Hecke, H. Sorge, N. Xu, Evidence of early multistrange hadron freeze-out in high energy nuclear collisions. Phys. Rev. Lett. 81, 5764 (1998). https://doi.org/10.1103/PhysRevLett.81.5764

    Article  Google Scholar 

  32. A. Shor, ϕ-Meson production as a probe of the quark-gluon plasma. Phys. Rev. Lett. 54, 1122 (1985). https://doi.org/10.1103/PhysRevLett.54.1122

    Article  Google Scholar 

  33. Y.C. He, Z.W. Lin, Improved quark coalescence for a multi-phase transport model. Phys. Rev. C 96, 014910 (2017). https://doi.org/10.1103/PhysRevC.96.014910

    Article  Google Scholar 

  34. L.W. Chen, C.M. Ko, ϕ and Ω production in relativistic heavy-ion collisions in a dynamical quark coalescence model. Phys. Rev. C 73, 044903 (2006). https://doi.org/10.1103/PhysRevC.73.044903

    Article  Google Scholar 

  35. C.M. Ko, Transport model studies of the baryon-rich quark-gluon plasma formed in heavy ion collisions. PoS CPOD 2009 (2009), p. 034. https://doi.org/10.22323/1.071.0034

  36. Z.W. Lin, C.M. Ko, B.A. Li et al., Multiphase transport model for relativistic heavy ion collisions. Phys. Rev. C 72, 064901 (2005). https://doi.org/10.1103/PhysRevC.72.064901

    Article  Google Scholar 

  37. A. Bzdak, G.L. Ma, Elliptic and triangular flow in \(p\)-Pb and peripheral Pb–Pb collisions from parton scatterings. Phys. Rev. Lett. 113, 252301 (2014). https://doi.org/10.1103/PhysRevLett.113.252301

    Article  Google Scholar 

  38. Z.W. Lin, Evolution of transverse flow and effective temperatures in the parton phase from a multiphase transport model. Phys. Rev. C 90, 014904 (2014). https://doi.org/10.1103/PhysRevC.90.014904

    Article  Google Scholar 

  39. Z.W. Lin, C.M. Ko, S. Pal, Partonic effects on pion interferometry at the relativistic heavy-ion collider. Phys. Rev. Lett. 89, 152301 (2002). https://doi.org/10.1103/PhysRevLett.89.152301

    Article  Google Scholar 

  40. X.N. Wang, Role of multiple minijets in high-energy hadronic reactions. Phys. Rev. D 43, 104 (1991). https://doi.org/10.1103/PhysRevD.43.104

    Article  Google Scholar 

  41. X.N. Wang, M. Gyulassy, HIJING: a Monte Carlo model for multiple jet production in pp, pA, and AA collisions. Phys. Rev. D 44, 3501 (1991). https://doi.org/10.1103/PhysRevD.44.3501

    Article  Google Scholar 

  42. B. Zhang, ZPC 1.0.1: a parton cascade for ultrarelativistic heavy ion collisions. Comput. Phys. Commun. 109, 193 (1998). https://doi.org/10.1016/S0010-4655(98)00010-1

    Article  MATH  Google Scholar 

  43. B.A. Li, C.M. Ko, Formation of superdense hadronic matter in high energy heavy-ion collisions. Phys. Rev. C 52, 2037 (1995). https://doi.org/10.1103/PhysRevC.52.2037

    Article  Google Scholar 

  44. B.A. Li, A.T. Sustich, B. Zhang et al., Studies of superdense hadronic matter in a relativistic transport model. Int. J. Mod. Phys. E 10, 267 (2001). https://doi.org/10.1142/S0218301301000575

    Article  Google Scholar 

  45. Z.W. Lin, C.M. Ko, Partonic effects on the elliptic flow at relativistic heavy ion collisions. Phys. Rev. C 65, 034904 (2002). https://doi.org/10.1103/PhysRevC.65.034904

    Article  Google Scholar 

  46. R. Mattiello, A. Jahns, H. Sorge, H. Stocker, W. Greiner, Deuteron flow in ultrarelativistic heavy ion reactions. Phys. Rev. Lett. 74, 2180 (1995). https://doi.org/10.1103/PhysRevLett.74.2180

    Article  Google Scholar 

  47. J. Ollitrault, Flow systematics from SIS to SPS energies. Nucl. Phys. A 638, 195 (1998). https://doi.org/10.1016/S0375-9474(98)00413-8

    Article  Google Scholar 

  48. U. Heinz, R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions. Annu. Rev. Nucl. Part. Sci. 63, 123 (2013). https://doi.org/10.1146/annurev-nucl-102212-170540

    Article  Google Scholar 

  49. L. Ma, G.L. Ma, Y.G. Ma, Anisotropic flow and flow fluctuations for Au + Au at \(\sqrt{s_{_{\rm NN}}}\) = 200 GeV in a multiphase transport model. Phys. Rev. C 89, 044907 (2014). https://doi.org/10.1103/PhysRevC.89.044907

    Article  Google Scholar 

  50. L. Adamczyk et al. (STAR Collaboration), Centrality dependence of identified particle elliptic flow in relativistic heavy ion collisions at \(\sqrt{s_{_{\rm NN}}}\) = 7.7–62.4 GeV. Phys. Rev. C 93, 014907 (2016). https://doi.org/10.1103/PhysRevC.93.014907

    Article  Google Scholar 

  51. B. Alver, G. Roland, Collision-geometry fluctuations and triangular flow in heavy-ion collisions. Phys. Rev. C 81, 054905, 2010. https://doi.org/10.1103/PhysRevC.81.054905; Erratum: Collision-geometry fluctuations and triangular flow in heavy-ion collisions. Phys. Rev. C 82, 039903 (2010). https://doi.org/10.1103/PhysRevC.82.039903

  52. S. Zhang, Y.G. Ma, J.H. Chen et al., Nuclear cluster structure effect on elliptic and triangular flows in heavy-ion collisions. Phys. Rev. C 95, 064904 (2017). https://doi.org/10.1103/PhysRevC.95.064904

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Zi-Wei Lin for the help to implement the local parton density fluctuation effect in AMPT model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Hui Chen.

Additional information

This work was supported in part by the Major State Basic Research Development Program in China (Nos. 2014CB845400 and 2015CB856904), and the National Natural Science Foundation of China (Nos. 11775288, 11421505, and 11520101004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, XH., Chen, JH., Ma, YG. et al. Ω and ϕ production in Au + Au collisions at \(\sqrt{s_{_\mathrm{NN}}} = 11.5\)  and 7.7 GeV in a dynamical quark coalescence model. NUCL SCI TECH 29, 54 (2018). https://doi.org/10.1007/s41365-018-0393-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0393-1

Keywords

Navigation