Calculations of the transmitted gamma photons through infinite slabs

Article
  • 34 Downloads

Abstract

The intensity and number of transmitted multiple scattered photons are calculated for 0.123, 0.320, 0.511, 0.662, and 1.115 MeV gamma photons normally incident on slabs of carbon, aluminum, iron, copper, water, muscle, bone, and concrete with thicknesses varying from 1 to 10 mean free paths. The dependence of the transmission probability and energy distribution on the incident energy and material are examined. In general, the obtained results show good agreement with the other values calculated by the Monte Carlo method.

Keywords

Monte Carlo simulation Gamma photons Energy distribution Transmission probability 

References

  1. 1.
    I. Umeda, Calculation of the transmission of singly scattered gamma-rays through finite thin slabs. J. Nucl. Sci. Techol. 1(2), 37–40 (1964).  https://doi.org/10.1080/18811248.1964.9732076 CrossRefGoogle Scholar
  2. 2.
    A. Shimizu, H. Mizuta, Application of invariant imbedding to the reflection and transmission problems of gamma rays (II). J. Nucl. Sci. Technol. 3(10), 441–447 (1966).  https://doi.org/10.1080/18811248.1966.9732359 CrossRefGoogle Scholar
  3. 3.
    Y. Harima, Y. Nishiwaki, Analysis of transmitted gamma-rays by multiple scattering method, (I) gamma-rays transmitted through slabs of one material. J. Nucl. Sci. Technol. 7(8), 407–417 (1970).  https://doi.org/10.1080/18811248.1970.9734710 CrossRefGoogle Scholar
  4. 4.
    G. Singh, M. Singh, B.S. Sandhu et al., Experimental investigations of multiple scattering of 662 keV gamma photons in elements and binary alloys. Appl. Radiat. Isot. 66, 1151–1159 (2008).  https://doi.org/10.1016/j.apradiso.2008.01.007 CrossRefGoogle Scholar
  5. 5.
    U. Akar Tarim, E.N. Ozmutlu, O. Gurler et al., Monte Carlo modeling of single and multiple Compton scattering profiles in a concrete material. Radiat. Phys. Chem. 85, 12–17 (2013).  https://doi.org/10.1016/j.radphyschem.2012.10.018 CrossRefGoogle Scholar
  6. 6.
    D.S. Vlachos, T.E. Simos, PDSW: a program for the calculation of photon energy distribution resulting from radioactive elements in seawater. Comput. Phys. Commun. 174, 391–395 (2006).  https://doi.org/10.1016/j.cpc.2005.10.010 CrossRefGoogle Scholar
  7. 7.
    T. Pitkanen, D. Laundy, R.S. Holt et al., The multiple scattering profile in gamma ray compton studies. Nucl. Instrum. Methods Phys. Res. A 251, 536–544 (1986)CrossRefGoogle Scholar
  8. 8.
    F. Arqueros, G.D. Montesinos, A simple algorithm for the transport of gamma rays in a medium. Am. J. Phys. 71(1), 38–45 (2003).  https://doi.org/10.1119/1.1509416 CrossRefGoogle Scholar
  9. 9.
    J.H. Hubbell, Electron–positron pair production by photons: a historical overview. Radiat. Phys. Chem. 75, 614–623 (2006).  https://doi.org/10.1016/j.radphyschem.2005.10.008 CrossRefGoogle Scholar
  10. 10.
    M. Ragheb, Gamma rays interaction with matter (2017). www.mragheb.com. Accessed 18 Feb 2017
  11. 11.
  12. 12.
    J.H. Hubbell, Review and history of photon cross section calculations. Phys. Med. Biol. 51, R245–R262 (2006).  https://doi.org/10.1088/0031-9155/51/13/R15 CrossRefGoogle Scholar
  13. 13.
    A. Aydın, Energy distributions of multiple backscattered photons in materials. Nucl. Sci. Technol. 29, 23 (2017)CrossRefGoogle Scholar
  14. 14.
    M.J. Berger, J.H. Hubbell, S.M. Seltzer et al., XCOM: photons cross sections database (online) (2010). http://www.nist.gov/pml/data/xcom/index.cfm/. Accessed 5 Jan 2017
  15. 15.
    O. Klein, Y.Z. Nishina, Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dira. Z. Phys. 52(11–12), 853–869 (1929)CrossRefMATHGoogle Scholar
  16. 16.
    E.N. Ozmutlu, Sampling of angular distribution in compton scattering. Appl. Radiat. Isot. 43(6), 713–715 (1992)CrossRefGoogle Scholar
  17. 17.
    International Commission on Radiation Units and Measurements; ICRU Report 44; ICRU: Bethesda (1989)Google Scholar
  18. 18.
    M. Singh, G. Singh, B.S. Sandhu et al., Energy and Intensity distributions of multiple Compton scattering of 0.279, 0.662 and 1.12 MeV gamma rays. Phys. Rev. A 74, 1–9 (2006).  https://doi.org/10.1103/PhysRevA.74.042714 Google Scholar
  19. 19.
    U. Akar Tarım, O. Gurler, E.N. Ozmutlu et al., Monte Carlo calculations of the energy deposited in biological samples and shielding materials. Radiat. Eff. Def. Solids 169(3), 232–238 (2014).  https://doi.org/10.1080/10420150.2013.841161 CrossRefGoogle Scholar
  20. 20.
    M. Singh, G. Singh, B.S. Sandhu et al., Angular distribution of 0.662 MeV multiply-Compton scattered gamma rays in copper. Radiat. Meas. 42, 420–427 (2007).  https://doi.org/10.1016/j.radmeas.2007.01.037 CrossRefGoogle Scholar
  21. 21.
    A.D. Sabharwal, B.S. Sandhu, B. Singh, Compton backscattering from broad beam of gamma rays in aluminium and zinc. Asain J. Chem. 18, 3390–3394 (2006)Google Scholar
  22. 22.
    M. Singh, G. Singh, B. Singh et al., Energy and intensity distributions of 0.279 MeV multiply Compton-scattered photons in soldering material. Nucl. Instrum. Methods Phys. Res. A 580, 54–57 (2007).  https://doi.org/10.1016/j.nima.2007.05.016 CrossRefGoogle Scholar
  23. 23.
    P.P. Kane, Inelastic scattering of X-rays and gamma rays. Radiat. Phys. Chem. 75, 2195–2205 (2006).  https://doi.org/10.1016/j.radphyschem.2006.08.001 CrossRefGoogle Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Arts and SciencesBalıkesir UniversityBalıkesirTurkey

Personalised recommendations