Skip to main content

Advertisement

Log in

Design of detector to monitor the Bragg peak location of carbon ions by means of prompt γ-ray measurements with Geant4

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Real-time monitoring of the Bragg peak location of carbon ions is urgently required for the quality control of hadron therapy. In this study, we design an annular detector to monitor the Bragg peak location of carbon ions with Geant4 simulation . This \(360{^\circ }\) surrounding structure has a high detection efficiency for the small-dose situation. The detector consists of a multilayered collimator system and an NaI scintillator for prompt gamma counting. The multilayered collimator includes a lead layer to prevent unwanted gammas and the paraffin and boron carbide layers to moderate and capture fast neutrons . An inclination of the detector further diminishes the background signal caused by neutrons. The detector, with optimized parameters, is applicable to carbon ions of different energies. In addition, the scintillator is replaced by an improved EJ301 organic liquid scintillator to discriminate gammas and neutrons. Inserting thin Fe slices into the liquid scintillator improves the energy deposition efficiency. The Bragg peak location of 200 MeV/u carbon ions can be monitored by prompt gamma detection with the improved liquid scintillator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G. Kraft, Tumortherapy with ion beams. Nucl. Instrum. Meth. A 454, 1–10 (2000). https://doi.org/10.1016/S0168-9002(00)00802-0

    Article  Google Scholar 

  2. U. Amaldi, G. Kraft, Radiotherapy with beams of carbon ions. Rep. Prog. Phys. 68, 1861–1882 (2005). https://doi.org/10.1088/0034-4885/68/8/R04

    Article  Google Scholar 

  3. G. Kraft, Ion beam therapy in Europe, Application of Accelerators in Research and Industry: Twentieth International Conference. AIP Conference Proceedings, 1099, 429–434 (2009). https://doi.org/10.1063/1.3120066

  4. C.H. Min, C.H. Kim, M.Y. Youn et al., Prompt gamma measurements for locating the dose falloff region in the proton therapy. Appl. Phys. Lett. 89, 183517 (2006). https://doi.org/10.1063/1.2378561

    Article  Google Scholar 

  5. J.C. Polff, S. Peterson, M. McCleskey et al., Measurement and calculation of characteristic prompt gamma ray spectra during proton irradiation. Phys. Med. Biol. 54, 519–527 (2009). https://doi.org/10.1088/0031-9155/54/22/N02

    Article  Google Scholar 

  6. E. Testa, M. Bajard, M. Chevallier et al., Monitoring the Bragg peak location of 73 MeV/u carbon ions by means of prompt gamma-ray measurements. Appl. Phys. Lett. 93, 093506 (2008). https://doi.org/10.1063/1.2975841

    Article  Google Scholar 

  7. E. Testa, M. Bajard, M. Chevallier et al., Dose profile monitoring with carbon ions by means of prompt-gamma measurements. Nucl. Instrum. Meth. B 267, 993–996 (2009). https://doi.org/10.1016/j.nimb.2009.02.031

    Article  Google Scholar 

  8. E. Testa, M. Bajard, M. Chevallier et al., Real-time monitoring of the Bragg-peak position in ion therapy by means of single photon detection. Radiat. Environ. Biophys. 49, 337–343 (2010). https://doi.org/10.1007/s00411-010-0276-2

    Article  Google Scholar 

  9. S. Chauvie, S. Guatelli, V. Ivanchenko, et al., Geant4 Low Energy Electromagnetic Physics, in Conference Record 2004 IEEE Nuclear Science Symposium, 3, 1881–1885 (2004). https://doi.org/10.1109/NSSMIC.2004.1462612

  10. J.P. Wellisch, Hadronic shower models in Geant4—the frameworks. Comput. Phys. Commun. 140, 65–75 (2001). https://doi.org/10.1016/S0010-4655(01)00256-9

    Article  MATH  Google Scholar 

  11. G.A.P.Cirrone, G. Cuttone, F. D. Rosa, et al., Validation of Geant4 Physics Models for the Simulation of the Proton Bragg Peak, in Conference Record 2006 IEEE Nuclear Science Symposium, N22-2, 788–792 (2006). https://doi.org/10.1109/NSSMIC.2006.355969

  12. D. Schardt, Tumor therapy with high-energy carbon ion beams. Nucl. Phys. A 787, 633–641 (2007). https://doi.org/10.1016/j.nuclphysa.2006.12.097

    Article  Google Scholar 

  13. C.H. Min, J.G. Park, S.H. An et al., Determination of optimal energy window for measurement of prompt gammas from proton beam by Monte Carlo simulations. J. Nucl. Sci. Technol 45, 28–31 (2014). https://doi.org/10.1080/00223131.2008.10875777

    Article  Google Scholar 

  14. L. Chang, Y. Liu, D. Long et al., Pulse shape discrimination and energy calibration of EJ301 liquid scintillation detector. Nucl. Tech 38, 1–6 (2015). https://doi.org/10.11889/j.0253-3219.2015.hjs.38.020501. (in Chinese)

    Article  Google Scholar 

  15. S.Y.L.T. Zhang, Z.Q. Chen, R. Han, Study on gamma response function of EJ301 organic liquid scintillator with GEANT4 and FLUKA. Chin. Phys. C 37, 126003 (2013). https://doi.org/10.1088/1674-1137/37/12/126003

    Article  Google Scholar 

  16. J. Wu, Y.Q. Liu, T.Y. Ma et al., GATE simulation based feasibility studies of in-beam PET monitoring in \({^{12}}\)C beam cancer therapy. Nucl. Sci. Technol. 21, 275–280 (2010). https://doi.org/10.13538/j.1001-8042/nst.21.275-280

    Google Scholar 

  17. Q.Y. Wei, T.P. Xu, T.T. Dai et al., Development of a compact DOI-TOF detector module for high-performance PET systems. Nucl. Sci. Technol. 28, 43 (2017). https://doi.org/10.1007/s41365-017-0202-2

    Article  Google Scholar 

  18. M.A. Piliero, N. Belcari, M.G. Bisogni et al., First results of the INSIDE in-beam PET scanner for the on-line monitoring of particle therapy treatments. J. Instrum. 11, C12011 (2016). https://doi.org/10.1088/1748-0221/11/12/C12011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Fan.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos.  11375073 and U1232206).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Huang, GM., Sun, XM. et al. Design of detector to monitor the Bragg peak location of carbon ions by means of prompt γ-ray measurements with Geant4. NUCL SCI TECH 29, 48 (2018). https://doi.org/10.1007/s41365-018-0388-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0388-y

Keywords

Navigation