Cross-sectional investigation of radiation damage of 2 MeV proton-irradiated silicon carbide

  • Xu Wang
  • Yan-Wen Zhang
  • Dong Han
  • Yun-Biao Zhao
  • Zi-Qiang Zhao
  • Ming Zhang


Cross-sectional investigation is an important method to study ion irradiation effects in the depth direction. In this study, 2 MeV H+ was implanted in 6H-SiC single crystals to investigate the effects of light ion irradiation on SiC. Raman spectroscopy and scanning electronic microscopy (SEM) were carried out on cross-sectional samples to reveal the in-depth damage states and dopant behavior. The most damaged region is a little shallower than that predicted by the SRIM procedure, owing to the uncertainty in SRIM simulations. Layered structures representing zones of varying damage after 2 MeV H ion irradiation are clearly observed. Two bands are observed in SEM images, of which on band corresponds to the damage peak, while the other band at the end of the H ion-affected area is probably a result of H diffusion propelled by a hydrogen-rich layer during irradiation. A charge accumulation effect related with conductivity on the sample surfaces during SEM tests is observed in the H-implanted area. A model is proposed to explain these phenomena.


SiC Proton irradiation Cross-sectional analysis Raman spectroscopy SEM 


  1. 1.
    J.B. Casady, R.W. Johnson, Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review. Solid State Electron. 39, 1409–1422 (1996). CrossRefGoogle Scholar
  2. 2.
    C. Raynaud, Silica films on silicon carbide: a review of electrical properties and device applications. J. Non-Cryst. Solids 280, 1–31 (2001). CrossRefGoogle Scholar
  3. 3.
    A.A. Lebedev, A.I. VeÏnger, D.V. Davydov et al., Radiation defects in n-4H-SiC irradiated with 8-MeV protons. Semiconductors 34, 1016–1020 (2000). CrossRefGoogle Scholar
  4. 4.
    N.B. Strokan, A.M. Ivanov, N.S. Savkina et al., Radiation resistance of transistor-and diode-type SiC detectors irradiated with 8-MeV protons. Semiconductors 38, 807–811 (2004). CrossRefGoogle Scholar
  5. 5.
    G. Alfieri, E.V. Monakhov, B.G. Svensson, Defect energy levels in hydrogen-implanted and electron-irradiated n-type 4H silicon carbide. J. Appl. Phys. 98, 113524 (2005). CrossRefGoogle Scholar
  6. 6.
    H.J. von Bardeleben, J.L. Cantin, I. Vickridge, Proton-implantation-induced defects in n-type 6 H-and 4 H-SiC: an electron paramagnetic resonance study. Phys. Rev. B. 62, 10126 (2000). CrossRefGoogle Scholar
  7. 7.
    Y. Han, B.S. Li, Z.G. Wang et al., H-ion irradiation-induced annealing in He-ion implanted 4H-SiC. Chin. Phys. Lett. 34, 012801 (2017). CrossRefGoogle Scholar
  8. 8.
    N.B. Strokan, A.M. Ivanov, A.A. Lebedev, Transport of the charge carriers in SiC-detector structures after extreme radiation fluences. Nucl. Instrum. Meth. A. 569, 758–763 (2006). CrossRefGoogle Scholar
  9. 9.
    H.J. von Bardeleben, J.L. Cantin, Electron paramagnetic resonance study of proton implantation induced defects in monocrystalline 4H- and 6H-SiC. Nucl. Instrum. Meth. B 186, 201–205 (2002). CrossRefGoogle Scholar
  10. 10.
    A.A. Lebedev, B.Ya. Ber, G.A. Oganesyan et al., Effect of 3C-SiC irradiation with 8 MeV protons. Mater. Sci. Forum 897, 311–314 (2017). CrossRefGoogle Scholar
  11. 11.
    N. Achtziger, J. Gillenberger, W. Witthuhn et al., Hydrogen passivation of silicon carbide by low-energy ion implantation. Appl. Phys. Lett. 73, 945 (1998). CrossRefGoogle Scholar
  12. 12.
    M.K. Linnarsson, J.P. Doyle, B.G. Svensson, Diffusion of hydrogen in 6H silicon carbide. Mater. Res. Soc. Symp. Proc. 423, 625 (1996). CrossRefGoogle Scholar
  13. 13.
    J.F. Ziegler, J.P. Biersack, U. Littmarck, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985)Google Scholar
  14. 14.
    H.Y. Kim, J. Kim, J.A. Freitas Jr., Penetration depth profiling of proton-irradiated 4H-SiC at 6 MeV and 8 MeV by micro-Raman spectroscopy. Appl. Surf. Sci. 270, 44–48 (2013). CrossRefGoogle Scholar
  15. 15.
    X. Wang, Y.W. Zhang, S.Y. Liu et al., Depth profiling by Raman spectroscopy of high-energy ion irradiated silicon carbide. Nucl. Instrum. Meth. B 319, 55–61 (2014). CrossRefGoogle Scholar
  16. 16.
    G. Guimbretière, L. Desgranges, A. Canizarès et al., Determination of in-depth damaged profile by Raman line scan in a pre-cut He2+ irradiated UO2. Appl. Phys. Lett. 100, 251914 (2012). CrossRefGoogle Scholar
  17. 17.
    S. Miro, G. Velisa, L. Thomé et al., Monitoring by Raman spectroscopy of the damage induced in the wake of energetic ions. J. Raman Spectrosc. 45, 481–486 (2014). CrossRefGoogle Scholar
  18. 18.
    K. Huang, Q. Jia, T.G. You et al., Defect formation in MeV H+ implanted GaN and 4H-SiC investigated by cross-sectional Raman spectroscopy. Nucl. Instrum. Meth. B. Article in press (2017).
  19. 19.
    R. Devanathan, W.J. Weber, Displacement energy surface in 3C and 6H-SiC. J. Nucl. Mater. 278, 258–265 (2000). CrossRefGoogle Scholar
  20. 20.
    S. Sorieul, J.M. Costantini, L. Gosmain et al., Raman spectroscopy study of heavy-ion-irradiated α-SiC. J. Phys.: Condens. Matter 18, 5235–5251 (2006). Google Scholar
  21. 21.
    J. Lindhard, V. Nielsen, M. Scharff, Approximation method in classical scattering by screened coulomb fields. Matemat. Fysis. Meddel. 36, 1–32 (1968)Google Scholar
  22. 22.
    H.Z. Xue, Y. Zhang, Z. Zhu et al., Damage profiles and ion distribution in Pt-irradiated SiC. Nucl. Instrum. Meth. B 286, 114–118 (2012). CrossRefGoogle Scholar
  23. 23.
    Y. Zhang, I.T. Bae, K. Sun et al., Damage profile and ion distribution of slow heavy ions in compounds. J. Appl. Phys. 105, 104901 (2009). CrossRefGoogle Scholar
  24. 24.
    K. Jin, Y. Zhang, H. Xue et al., Ion distribution and electronic stopping power for Au ions in silicon carbide. Nucl. Instrum. Meth. B 307, 65–70 (2013). CrossRefGoogle Scholar
  25. 25.
    C. Lan, J.M. Xue, Y. Zhang et al., Molecular dynamics simulations of ion range profiles for heavy ions in light targets. Nucl. Instrum. Meth. B 286, 45–60 (2012). CrossRefGoogle Scholar
  26. 26.
    S. Moll, Y. Zhang, Z. Zhu et al., Comparison between simulated and experimental Au-ion profiles implanted in nanocrystalline ceria. Nucl. Instrum. Meth. B 307, 93–97 (2013). CrossRefGoogle Scholar
  27. 27.
    Y. Zhang, W.J. Weber, Electronic stopping of He, B, N, and Al in SiC. Appl. Phys. Lett. 83, 1665 (2003). CrossRefGoogle Scholar
  28. 28.
    Y. Zhang, W. Weber, C. Wang, Electronic stopping powers in silicon carbide. Phys. Rev. B. 69, 205201 (2004). CrossRefGoogle Scholar
  29. 29.
    J.F. Ziegler, J.M. Manoyan, The stopping of ions in compounds. Nucl. Instrum. Meth. B 35, 215–228 (1988). CrossRefGoogle Scholar
  30. 30.
    Y. Zhang, T. Varga, M. Ishimaru et al., Competing effects of electronic and nuclear energy loss on microstructural evolution in ionic-covalent materials. Nucl. Instrum. Meth. B 327, 33–43 (2014). CrossRefGoogle Scholar
  31. 31.
    W.J. Weber, D.M. Duffy, L. Thomé, Y. Zhang, The role of electronic energy loss in ion beam modification of materials. Curr. Opin. Solid State Mater. Sci. 19, 1–11 (2015). CrossRefGoogle Scholar
  32. 32.
    L. Thomé, A. Debelle, F. Garrido et al., Combined effects of nuclear and electronic energy losses in solids irradiated with a dual-ion beam. Appl. Phys. Lett. 102, 141906 (2013). CrossRefGoogle Scholar
  33. 33.
    M.K. Linnarsson, M.S. Janson, S. Karlsson et al., Diffusion of light elements in 4H- and 6H-SiC. Mater. Sci. Eng., B 61, 275–280 (1999). CrossRefGoogle Scholar
  34. 34.
    A. Barcz, M. Kozubal, R. Jakieła et al., Diffusion and impurity segregation in hydrogen-implanted silicon carbide. J. Appl. Phys. 115, 223710 (2014). CrossRefGoogle Scholar
  35. 35.
    K.H. Kim, Z. Akase, T. Suzuki et al., Charging effects on SEM/SIM contrast of metal/insulator system in various metallic coating conditions. Mater. Trans. 51, 1080–1083 (2010). CrossRefGoogle Scholar
  36. 36.
    J.G. Laven, H.J. Schulze, V. Haublein et al., Dopant profiles in silicon created by MeV hydrogen implantation: influence of annealing parameters. Phys. Status Solidi C 8, 697–700 (2011). CrossRefGoogle Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute of MaterialsChina Academy of Engineering PhysicsJiangyouChina
  2. 2.Department of Nuclear PhysicsChina Institute of Atomic EnergyBeijingChina
  3. 3.State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of PhysicsPeking UniversityBeijingChina

Personalised recommendations