Advertisement

Journal of Plant Diseases and Protection

, Volume 126, Issue 2, pp 153–160 | Cite as

The complete genome of the antifungal bacterium Pseudomonas sp. strain MS82

  • Lin Ma
  • Shaoxuan Qu
  • Jinsheng Lin
  • Jiayuan Jia
  • Sonya M. Baird
  • Ning Jiang
  • Huiping Li
  • Lijuan Hou
  • Shi-En LuEmail author
Original Article
  • 104 Downloads

Abstract

The genomic sequence of Pseudomonas sp. strain MS82 isolated from the rhizosphere of a soybean plant is reported and analyzed in relation to its extensive antifungal activity. Broth media used for production of the antifungal extract from strain MS82 against the mushroom pathogen Trichoderma viride were optimized using the routine plate bioassays. Culture extract of strain 82 in the peptone–K2HPO4–MgSO4 medium (PKM; peptone 20 g/L, K2HPO4 1.5 g/L, MgSO4 1.5 g/L and sterilized water) showed the best antifungal activity with an inhibition rate of 88.69 ± 3.87% to the fungal pathogen. Control efficacy of the T. viride contamination was investigated in mushroom production compost. The disease severity index of P. ostreatus hyphae infected by T. viride of treatment mixed with MS82 supernatant (38.33 ± 5.20%) was lower than that of the compost mixed with non-inoculated broth (97.50 ± 2.50%). The multilocus sequence analysis, containing four partial sequences from the gyrB, rpoB, recA and rpoD, suggests that strain MS82 is a Pseudomonas strain. The strain MS82 genome consists of a circular chromosome of 6,207,556 bp that was predicted to encode 5401 proteins and 131 RNA genes. Genome analysis revealed the presence of the gene clusters for biosynthesis of antifungal compounds, such as phenazine, pyocyanin, pyoverdine, volatile HCN and cyclic lipopeptides (arthrofactin). Genome analysis presented in the report will provide insights into development of biological control for fungal contamination in mushroom cultivation.

Keywords

Pseudomonas sp. strain MS82 Complete genome Antifungal activity Mushroom cultivation Secondary metabolites 

Abbreviations

NBY

Nutrient broth yeast extract

COG

Clusters of Orthologous Groups

GO

Gene Ontology

IDA

Inferred from direct assay

KEGG

Kyoto Encyclopedia of Genes and Genomes

NAS

Non-traceable

NR

Non-Redundant Protein database

TAS

Traceable author statement

HCN

Hydrogen cyanide

Notes

Acknowledgements

This research was supported in part by Natural Science Foundation of Jiangsu Province for Youth (BK20150547 to ML) and China Agriculture Research System (CARS20 to ML). This research was funded in part by the USDA NIFA (Grant MIS-401170 to S-EL.).

Authors’ contributions

LM and SL designed the experiments; SQ, JL, JJ, SB, NJ, HL and LH performed the experiments; LM and SL wrote the manuscript, and all authors read, critiqued and edited the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Al-Ani BM, Owaid MN, Al-Saeedi S (2017) Fungal interaction between Trichoderma spp. and Pleurotus ostreatus on the enriched solid media with licorice Glycyrrhiza glabra root extract. Acta Ecol Sin 38:268–273CrossRefGoogle Scholar
  2. Arrebola E, Cazorla FM, Codina JC, Gutierrez-Barranquero JA, Perez-Garcia A, de Vicente A (2009) Contribution of mangotoxin to the virulence and epiphytic fitness of Pseudomonas syringae pv. syringae. Int Microbiol 12:87–95PubMedGoogle Scholar
  3. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bairoch A, Apweiler R (1998) The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1998. Nucleic Acids Res 26:38–42CrossRefPubMedPubMedCentralGoogle Scholar
  5. Berendsen RL, Kalkhove SIC, Lugones LG, Baars JJP, Wosten HAB, Bakker PAHM (2012a) Effects of fluorescent Pseudomonas spp. isolated from mushroom cultures on Lecanicillium fungicola. Biol Control 63:210–221CrossRefGoogle Scholar
  6. Berendsen RL, Kalkhove SIC, Lugones LG, Wosten HAB, Bakker PAHM (2012b) Germination of Lecanicillium fungicola in the mycosphere of Agaricus bisporus. Env Microbiol Rep 4:227–233CrossRefGoogle Scholar
  7. Bertani G (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300PubMedPubMedCentralGoogle Scholar
  8. Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O’Donovan C, Phan I, Pilbout S, Schneider M (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 31:365–370CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen DQ, Wang DW, Xu CL, Chen C, Li JY, Wu WJ, Huang X, Xie H (2018) Nematicidal protease genes screened from a soil metagenomic library to control Radopholus similis mediated by Pseudomonas fluorescens pf36. Appl Microbiol Biot 102:3301–3314CrossRefGoogle Scholar
  10. Chi XY, Wang YH, Miao J, Feng ZB, Zhang HQ, Zhai JJ, Zhang HY, Tian LQ, Xue WW, Yang TT, Huang R, Hu XM, Ge YH (2017) Development and characterization of a fusion mutant with the truncated lacZ to screen regulatory genes for phenazine biosynthesis in Pseudomonas chlororaphis G05. Biol Control 108:70–76CrossRefGoogle Scholar
  11. Cho YS, Kim JS, Crowley DE, Cho BG (2003) Growth promotion of the edible fungus Pleurotus ostreatus by fluorescent pseudomonads. FEMS Microbiol Lett 218:271–276CrossRefPubMedGoogle Scholar
  12. Clevenger KD, Mascarenhas R, Catlin D, Wu R, Kelleher NL, Drake EJ, Gulick AM, Liu DL, Fast W (2017) Substrate trapping in the siderophore tailoring enzyme PvdQ. ACS Chem Biol 12:643–647CrossRefPubMedPubMedCentralGoogle Scholar
  13. Devi KK, Deepika S, Bhaduri A, Kothamasi D (2013) Polymorphism in hcnAB gene in Pseudomonas species reveals ecologically distinct hydrogen cyanide-producing populations. Geomicrobiol J 30:131–139CrossRefGoogle Scholar
  14. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefPubMedGoogle Scholar
  15. Gomila M, Pena A, Mulet M, Lalucat J, Garcia-Valdes E (2015) Phylogenomics and systematics in Pseudomonas. Front Microbiol 6:214.  https://doi.org/10.3389/fmicb.2015.00214 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hennessy RC, Phippen CBW, Nielsen KF, Olsson S, Stougaard P. (2017) Biosynthesis of the antimicrobial cyclic lipopeptides nunamycin and nunapeptin by Pseudomonas fluorescens strain In5 is regulated by the LuxR-type transcriptional regulator NunF. Microbiologyopen.  https://doi.org/10.1002/mbo3.516
  17. Hernandez-Salmeron JE, Hernandez-Leon R, Orozco-Mosqueda MD, Valencia-Cantero E, Moreno-Hagelsieb G, Santoyo G. (2016) Draft genome sequence of the biocontrol and plant growth-promoting rhizobacterium Pseudomonas fluorescens strain UM270. Stand Genomic Sci.  https://doi.org/10.1186/s40793-015-0123-9
  18. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, Rattei T, Mende DR, Sunagawa S, Kuhn M, Jensen LJ, von Mering C, Bork P (2016) eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 44:286–293CrossRefGoogle Scholar
  19. Hwang MSH, Morgan RL, Sarkar SF, Wang PW, Guttman DS (2005) Phylogenetic characterization of virulence and resistance phenotypes of Pseudomonas syringae. Appl Environ Microb 71:5182–5191CrossRefGoogle Scholar
  20. Kimbrel JA, Givan SA, Halgren AB, Creason AL, Mills DI, Banowetz GM, Armstrong DJ, Chang JH (2010) An improved, high-quality draft genome sequence of the Germination-Arrest Factor-producing Pseudomonas fluorescens WH6. BMC Genom 11:522.  https://doi.org/10.1186/1471-2164-11-522 CrossRefGoogle Scholar
  21. Kinscherf TG, Coleman RH, Barta TM, Willis DK (1991) Cloning and expression of the tabtoxin biosynthetic region from Pseudomonas syringae. J Bacteriol 173:4124–4132CrossRefPubMedPubMedCentralGoogle Scholar
  22. Li X, Gu GQ, Chen W, Gao LJ, Wu XH, Zhang LQ (2018) The outer membrane protein OprF and the sigma factor SigX regulate antibiotic production in Pseudomonas fluorescens 2P24. Microbiol Res 206:159–167CrossRefPubMedGoogle Scholar
  23. Liu K, Newman M, McInroy JA, Hu CH, Kloepper JW (2017) Selection and assessment of plant growth-promoting rhizobacteria for biological control of multiple plant diseases. Phytopathology 107:928–936CrossRefPubMedGoogle Scholar
  24. Liu X, Yu X, Yang Y, Heeb S, Gao S, Chan KG, Camara M, Gao K (2018) Functional identification of the prnABCD operon and its regulation in Serratia plymuthica. Appl Microbiol Biotechnol 102:3711–3721CrossRefPubMedGoogle Scholar
  25. Ma L, Qu S, Wang X, Deng P, Lin J, Li H, Hou L, Jiang N, Song J, Lu SE (2016) Identification of an antifungal bacterium against mushroom pathogen Trichoderma viride and characterization of genes associated with antifungal activity. Jiangsu J Agric Sci 32:528–533Google Scholar
  26. Ma L, Wang X, Deng P, Baird SM, Liu Y, Qu S, Lu SE (2017) The PafR gene is required for antifungal activity of strain MS82 against Mycogone perniciosa. Adv Microbiol 7:217–230CrossRefGoogle Scholar
  27. Markakis EA, Tjamos SE, Antoniou PP, Paplomatas EJ, Tjamos EC (2009) Phenolic responses of resistant and susceptible olive cultivars induced by defoliating and non defoliating Verticillium dahliae pathotypes. Plant Dis 94:1156–1162CrossRefGoogle Scholar
  28. Martinez-Garcia PM, Ruano-Rosa D, Schiliro E, Prieto P, Ramos C, Rodriguez-Palenzuela P, Mercado-Blanco J. (2015) Complete genome sequence of Pseudomonas fluorescens strain PICF7, an indigenous root endophyte from olive (Olea europaea L.) and effective biocontrol agent against Verticillium dahliae. Stand Genomic Sci.  https://doi.org/10.1186/1944-3277-10-10
  29. Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G, Thomashow LS (2001) Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183:6454–6465CrossRefPubMedPubMedCentralGoogle Scholar
  30. Morrison CK, Arseneault T, Novinscak A, Filion M (2017) Phenazine-1-carboxylic acid production by Pseudomonas fluorescens LBUM636 alters Phytophthora infestans growth and late blight development. Phytopathology 107:273–279CrossRefPubMedGoogle Scholar
  31. O’Rawe J, Jiang T, Sun GQ, Wu YY, Wang W, Hu JC, Bodily P, Tian LF, Hakonarson H, Johnson WE, Wei Z, Wang K, Lyon GJ. (2013) Low concordance of multiple variant-calling pipelines: practical implications for exome and genome sequencing. Genome Med.  https://doi.org/10.1186/gm432
  32. Piel J, Hofer I, Hui D (2004) Evidence for a symbiosis island involved in horizontal acquisition of pederin biosynthetic capabilities by the bacterial symbiont of Paederus fuscipes beetles. J Bacteriol 186:1280–1286CrossRefPubMedPubMedCentralGoogle Scholar
  33. Rohini Gowtham HG, Hariprasad P, Singh SB, Niranjana SR (2016) Biological control of Phomopsis leaf blight of brinjal (Solanum melongena L.) with combining phylloplane and rhizosphere colonizing beneficial bacteria. Biol Control 101:123–129CrossRefGoogle Scholar
  34. Scholz-Schroeder BK, Hutchison ML, Grgurina I, Gross DC (2001) The contribution of syringopeptin and syringomycin to virulence of Pseudomonas syringae pv. syringae strain B301D on the basis of sypA and syrB1 biosynthesis mutant analysis. Mol Plant Microbe Interact 14:336–348CrossRefPubMedGoogle Scholar
  35. Singh M, Chaudhary S, Sareen D (2017) Non-ribosomal peptide synthetases: identifying the cryptic gene clusters and decoding the natural product. J Biosci 42:175–187CrossRefPubMedGoogle Scholar
  36. Soler-Rivas C, Arpin N, Olivier JM, Wichers HJ (1999) WLIP, a lipodepsipeptide of Pseudomonas ‘reactans’, as inhibitor of the symptoms of the brown blotch disease of Agaricus bisporus. J Appl Microbiol 86:635–641CrossRefGoogle Scholar
  37. Tajalipour S, Hassanzadeh N, Jolfaee HK, Heydari A, Ghasemi A (2014) Biological control of mushroom brown blotch disease using antagonistic bacteria. Biocontrol Sci Techn 24:473–484CrossRefGoogle Scholar
  38. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  39. Tazawa J, Watanabe K, Yoshida H, Sato M, Homma Y (2017) Simple method of detection of the strains of fluorescent Pseudomonas spp. producing antibiotics, pyrrolnitrin and phloroglucinol. Soil Microorganisms 54:61–67Google Scholar
  40. Vallabhaneni SD (2016) Biocontrol of Rhizoctonia solani in tobacco (Nicotiana tabacum) seed beds using Pseudomonas fluorescens. Agric Res 5:137–144CrossRefGoogle Scholar
  41. Vidaver AK (1967) Synthetic and complex media for the rapid detection of fluorescence of phytopathogenic pseudomonads: effect of the carbon source. Appl Microbiol 15:1523–1524PubMedPubMedCentralGoogle Scholar
  42. Wang CH, Koch AL (1978) Constancy of growth on simple and complex media. J Bacteriol 136:969–975PubMedPubMedCentralGoogle Scholar
  43. Yan Q, Philmus B, Hesse C, Kohen M, Chang JH, Loper JE. (2016) The rare codon AGA is involved in regulation of pyoluteorin biosynthesis in Pseudomonas protegens Pf-5. Front Microbiol.  https://doi.org/10.3389/fmicb.2016.00497
  44. Yang MM, Mavrodi DV, Mavrodi OV, Thomashow LS, Weller DM (2017) Construction of a recombinant strain of Pseudomonas fluorescens producing both phenazine-1-carboxylic acid and cyclic lipopeptide for the biocontrol of take-all disease of wheat. Eur J Plant Pathol 149:683–694CrossRefGoogle Scholar
  45. Zarenejad F, Yakhchali B, Rasooli I (2012) Evaluation of indigenous potent mushroom growth promoting bacteria (MGPB) on Agaricus bisporus production. World J Microbiol Biotechnol 28:99–104CrossRefPubMedGoogle Scholar
  46. Zheng XY, Spivey NW, Zeng W, Liu PP, Fu ZQ, Klessig DF, He SY, Dong X (2012) Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe 11:587–596CrossRefPubMedPubMedCentralGoogle Scholar
  47. Zhou JY, Zhao XY, Dai CC (2014) Antagonistic mechanisms of endophytic Pseudomonas fluorescens against Athelia rolfsii. J Appl Microbiol 117:1144–1158CrossRefPubMedGoogle Scholar

Copyright information

© Deutsche Phytomedizinische Gesellschaft 2019

Authors and Affiliations

  • Lin Ma
    • 1
    • 2
    • 3
  • Shaoxuan Qu
    • 1
  • Jinsheng Lin
    • 1
  • Jiayuan Jia
    • 3
  • Sonya M. Baird
    • 3
  • Ning Jiang
    • 1
  • Huiping Li
    • 1
  • Lijuan Hou
    • 1
  • Shi-En Lu
    • 3
    Email author
  1. 1.Institute of Vegetable CropsJiangsu Academy of Agricultural SciencesNanjingChina
  2. 2.Jiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjingChina
  3. 3.Department of Biochemistry, Molecular Biology, Entomology and Plant PathologyMississippi State UniversityMississippi StateUSA

Personalised recommendations