Advertisement

Journal of Plant Diseases and Protection

, Volume 126, Issue 2, pp 107–114 | Cite as

Insect deterrent activity of ethanolic leaf extracts of landrace maize and determination of active compounds against Spodoptera littoralis Boisduval (Lepidoptera: Noctuidae)

  • Luis F. C. dos Santos
  • Esaú Ruiz-SánchezEmail author
  • Marcela Gamboa-Angulo
  • Azucena González-Coloma
Original Article
  • 87 Downloads

Abstract

The present work was carried out to gain insight into the chemical defense of maize against phytophagous insects. Leaves of sixteen landrace populations were extracted with ethanol. Deterrent activity of extracts was evaluated on Spodoptera littoralis and Rhopalosiphum padi under laboratory conditions. Most of the ethanolic extracts negatively affected settling of R. padi, but only the extract Xn-69 affected feeding of S. littoralis. Active extracts were combined based on their TLC pattern. Bioassay-guided fractionation using biomass gain (ΔB) and food consumption (ΔI) of S. littoralis showed that the active fraction contained three phytosterols: sitosterol, stigmasterol and campesterol as the major constituents. These compounds might be responsible for the negative effects of extracts on biomass gain through the inhibition of food consumption of S. littoralis larvae. These phytosterols might provide in maize nonpreference resistance mechanism against insect pests.

Keywords

Zea mays L. Native maize Host defense Plant metabolites Phytosterols 

Notes

Acknowledgements

This work has been partially supported by Grant CTQ2015-64049-C3-1-R (MINECO/FEDER). The authors thank Irma L. Medina-Baizabal of Unidad de Biotecnología at CICY. Luis dos Santos had a doctoral scholarship (572787) from CONACyT, Mexico.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abel CA, Wilson RL, Robbins JC (1995) Evaluation of Peruvian maize for resistance to European corn borer (Lepidoptera: Pyralidae) leaf feeding and ovipositional preference. J Ecol Entomol 88:1044–1048CrossRefGoogle Scholar
  2. Ahmad S, Veyrat N, Gordon-Weeks R, Zhang Y, Martin J, Smart L, Glauser G, Erb M, Flors V, Frey M, Ton J (2011) Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize. Plant Physiol 157:317–327CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aydin T, Cakir A, Kazaz C, Bayrak N, Bayir Y, Taşkesenligil Y (2014) Insecticidal metabolites from the rhizomes of Veratrum album against adults of colorado potato beetle, Leptinotarsa decemlineata. Chem Biodivers 11:1192–1204CrossRefPubMedGoogle Scholar
  4. Burgueño-Tapia E, Castillo L, González-Coloma A, Joseph-Nathan P (2008) Antifeedant and phytotoxic activity of the sesquiterpene p-benzoquinone perezone and some of its derivatives. J Chem Ecol 34:766–771CrossRefPubMedGoogle Scholar
  5. Cruz-Estrada A, Gamboa-Angulo M, Borges-Argáez R, Ruiz-Sánchez E (2013) Insecticidal effects of plant extracts on immature whitefly Bemisia tabaci Genn. (Hemiptera: Aleyroideae). Electron J Biotechnol 16:1–9.  https://doi.org/10.2225/vol16-issue1-fulltext-6 Google Scholar
  6. de Lange ES, Balmer D, Mauch-Mani B, Turlings TCJ (2014) Insect and pathogen attack and resistance in maize and its wild ancestors, the teosintes. New Phytol 204:329–341.  https://doi.org/10.1111/nph.13005 CrossRefGoogle Scholar
  7. Díaz M, Díaz CE, Álvarez RG, González A, Castillo L, González-Coloma A, Seoane G, Rossini C (2015) Differential anti-insect activity of natural products isolated from Dodonaea viscosa Jacq. (Sapindaceae). J Plant Prot Res 55:172–178CrossRefGoogle Scholar
  8. Farias-Rivera LA, Hernandez-Mendoza JL, Molina-Ochoa J, Pescador-Rubio A (2003) Effect of leaf extracts of teosinte, Zea diploperennis L., and a Mexican maize variety, criollo ‘Uruapeño’, on the growth and survival of the Fall armyworm (Lepidoptera: Noctuidae). Fla Entomol 86:239–243CrossRefGoogle Scholar
  9. Fraga BM, Díaz CE, Amador LJ, Reina M, Santana O, González-Coloma A (2014) Bioactive compounds from transformed root cultures and aerial parts of Bethencourtia hermosae. Phytochem 108:220–228.  https://doi.org/10.1016/j.phytochem.2014.09.010 CrossRefGoogle Scholar
  10. Ghosh A (2013) Efficacy of phytosterol as mosquito larvicide. Asian Pac J Trop Dis 3:252p.  https://doi.org/10.1016/S2222-1808(13)60050-X CrossRefGoogle Scholar
  11. Griebel T, Zeier J (2010) A role for b-sitosterol to stigmasterol conversion in plant-pathogen interactions. Plant J 63:254–268CrossRefPubMedGoogle Scholar
  12. Lee EA, Byrne PF, McMullen MD, Snook ME, Wiseman BR, Widstrom NW, Coe EH (1998) Genetic mechanisms underlying apimaysin and maysin synthesis and corn earworm antibiosis in maize (Zea mays L.). Genetics 149:1997–2006PubMedPubMedCentralGoogle Scholar
  13. Maag D, Erb M, Bernal JS, Wolfender JL, Turlings TCJ, Glauser G (2015) Maize domestication and anti-herbivore defences: leaf-specific dynamics during early ontogeny of maize and its wild ancestors. PLoS ONE 10(8):e0135722.  https://doi.org/10.1371/journal.pone.0135722 CrossRefPubMedPubMedCentralGoogle Scholar
  14. McMullen MD, Frey M, Degenhardt J (2009) Genetics and biochemistry of insect resistance in maize. In: Bennetzen JL, Hake SC (eds) Handbook of maize: it’s biology. Springer, New York, p 279Google Scholar
  15. Meihls LN, Handrick V, Glauser G, Barbier H, Kaur H, Haribal MM, Lipka AE, Gershenzon J, Buckler ES, Erb M, Köllner TG, Jander G (2013) Natural variation in maize aphid resistance is associated with 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucosidemethyl transferase activity. Plant Cell 25:2341–2355CrossRefPubMedPubMedCentralGoogle Scholar
  16. Miras-Moreno B, Sabater-Jara AB, Pedreño MA, Almagro L (2016) Bioactivity of phytosterols and their production in plant in vitro cultures. J Agric Food Chem 64:7049–7058.  https://doi.org/10.1021/acs.jafc.6b02345 CrossRefPubMedGoogle Scholar
  17. Ni X, Xu W, Blanco MH, Wilson JP (2014) Evaluation of fall armyworm resistance in maize germplasm lines using visual leaf injury rating and predator survey. Insect Sci 21:541–555.  https://doi.org/10.1111/1744-7917.12093 CrossRefPubMedGoogle Scholar
  18. Okello-Ekochu EJ, Wilkins RM (1993) Biological activity of maize leaf extracts against the African armyworm, Spodoptera exempta. Entomol Exp Appl 72:17–23CrossRefGoogle Scholar
  19. Painter RH (1951) Insect resistance in crop plants. The Macmillan Company, New York, pp 24–26Google Scholar
  20. Painter RH (1958) Resistance of plants to insects. Annu Rev Entomol 3(1):267–290CrossRefGoogle Scholar
  21. Poitout S, Bues R (1974) Elevage de plusieursesepeces de Lepidopteres Noctuidae sur milieu artificiel simplifié. [Breeding of several species of Lepidoptera Noctuidae on simplifies artifical diet]. Ann Zool Ecol Anim 2:79–91Google Scholar
  22. Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K (2008) Isolation and identification of mosquito larvicidal compound from Abutilon indicum (Linn.) sweet. Parasitol Res 102:981–988CrossRefPubMedGoogle Scholar
  23. Ruiz-Jiménez AL, González-Coloma A, Andrés-Yeves MF, Ruiz-Sánchez E, Heredia G, Peraza-Sánchez SR, Medina-Baizabal IL, Reys-Estebanez M, Canto-Canché B, Gamboa-Angulo M (2017) Insect deterrent and nematicidal screening of microfungi from Mexico and anti-aphid compounds from Gliomastix masseei. Rev Argent Microbiol 49:83–92.  https://doi.org/10.1016/j.ram.2016.08.009 PubMedGoogle Scholar
  24. Santana O, Reina M, Fraga BM, Sanz J, González-Coloma A (2012) Antifeedant activity of fatty acid esters and phytosterols from Echium wildpretii. Chem Biodivers 9:567–576CrossRefPubMedGoogle Scholar
  25. Tandon M, Shukla YN, Tripathi AK, Singh SC (1998) Insect antifeedant principles from Vernonia cinerea. Phytother Res 12:195–199CrossRefGoogle Scholar
  26. War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7:1306–1320CrossRefPubMedPubMedCentralGoogle Scholar
  27. Wilson TA, Wilson RL (2001) Leaf extracts from Peruvian maize affect larval feeding and development of European corn borer (Lepidoptera: Crambidae). J Kans Entomol Soc 74:32–39Google Scholar
  28. Wiseman BR (1994) Mechanisms of maize resistance to corn earworm and fall armyworm. In: Mihm JA (ed) Insect resistant maize—recent advances and utilization. Proceedings of an international symposium on CIMMYT, pp 44–54Google Scholar
  29. Wiseman BR, Davis FM (1979) Plant resistance to the fall armyworm. Fla Entomol 62:123–130CrossRefGoogle Scholar
  30. Wiseman BR, Snook ME, Wilson RL, Isenhour DJ (1992) Allelochemical content of selected popcorn silks: effects on growth of corn earworm larvae (Lepidopetra: Noctuidae). J Econ Entomol 85:2500–2504CrossRefGoogle Scholar
  31. Yan J, Lipka AE, Schmelz EA, Buckler ES, Jander G (2014) Accumulation of 5-hydroxynorvaline in maize (Zea mays) leaves is induced by insect feeding and abiotic stress. J Exp Bot 66:593–602.  https://doi.org/10.1093/jxb/eru385 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Deutsche Phytomedizinische Gesellschaft 2018

Authors and Affiliations

  1. 1.Tecnologico Nacional de México, Instituto Tecnológico de ConkalConkalMexico
  2. 2.Centro de Investigación Científica de Yucatán (CICY)MéridaMexico
  3. 3.Instituto de Ciencias Agrarias (ICA-CSIC)MadridSpain

Personalised recommendations