Skip to main content
Log in

Impact of leaf infestation by herbivorous insects on the elemental uptake of citrus trees

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

The elemental compositions of healthy and infested leaves of three species of lemon trees (Citrus aurantifolia, Citrus aurantium and Citrus medica) were compared to determine the impact of herbivorous insects on their uptake potentials. Systematically higher in the infested leaves than in the healthy, the total contents of major elements confirm a stress effect. The total amount of up-taken elements is increased by 8.2% in C. aurantium and by up to 30.9% in C. medica. Nutritive elements such as P and K decreased in C. aurantium, while they increased in the two other species by 5.3%, which is not representative analytically, and 61%. These notably different uptakes were obtained for two tree species infested by the same type of insect, demonstrating in turn that the type of insects does not determine the tree behavior. In turn, the elemental uptake by C. aurantium is almost systematically to the opposite of those of the two other species, which confirms that the defense process of the trees studied here is not insect specific but plant dependent. The different uptakes observed under defense stress do not suggest a standard behavior, reflecting a heterogeneous distribution of the major elements in the tree leaves. This interpretation is supported by the distribution of the rare earth elements of the infested leaves relative to that of the healthy equivalents. The varied patterns of the rare earth elements confirm that the trees do not develop a unique defense reaction. They display: (1) a flat distribution in C. medica without any fractionation induced by the insects, (2) a distribution characterized by an increased content in heavy rare earth elements in Citrus aurantifolia and (3) a pattern with a partially flat distribution but a significant decrease in the Ce content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbot P, Grinath J, Brown J, Peeden E, Erickson D, Billick I (2008) Insect herbivore stoichiometry: the relative importance of host plants and ant mutualists. Ecol Entomol 33:497–502

    Article  Google Scholar 

  • Agrawal AA (1999) Induced responses to herbivory in wild radish: effects on several herbivores and plant fitness. Ecology 80:1713–1723

    Article  Google Scholar 

  • Aldenius J, Carlsson B, Karlsson B (1983) Effects of insect trapping on growth and nutrient content of Pinguicula vulgaris L. in relation to nutrient content of the substrate. New Phytol 93:53–59

    Article  Google Scholar 

  • Al-Yahyai RA, Al-Sadi AM, Al-Said FAJ, Al-Kalbani ZH, Carvalho CM, Elliot SL, Bertaccini A (2015) Development and morphological changes in leaves and branches of acid lime (Citrus aurantifolia) affected by witches’ broom. Phytopathol Mediterr 54:133–139

    Google Scholar 

  • Ananthakrishnan TN (1999) Behavioural dynamics in the biological control of insects: role of infochemicals. Current Sci 77:33–37

    CAS  Google Scholar 

  • Anderson SS, McCrea KD, Abrahamson WG, Hartzel LM (1989) Host genotype choice by the ball gallmaker Eurosta solidaginis (Diptera: Tephritidae). Ecology 70:1048–1054

    Article  Google Scholar 

  • Arimura GI, Matsui K, Takabayashi J (2009) Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions. Plant Cell Physiol 50:911–923

    Article  CAS  PubMed  Google Scholar 

  • Arimura G, Tashiro K, Kuhara S, Nishioka T, Ozawa R, Takabayashi J (2000) Gene responses in bean leaves induced by herbivory and by herbivory-induced volatiles. Biochem Biophys Res Commun 277:305–310

    Article  CAS  PubMed  Google Scholar 

  • Armengaud P, Breitling R, Amtmann A (2004) The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of Jasmonic acid in nutrient signaling. Plant Physiol 136:2556–2576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyd RS, Martens SN (1998) The significance of metal hyperaccumulation for biotic interactions. Chemoecology 8:1–7

    Article  CAS  Google Scholar 

  • Boyd RS, Moar WJ (1999) The defensive function of Ni in plants: response of the polyphagous herbivore Spodoptera exigua (Lepidoptera: Noctuidae) to hyperaccumulator and accumulator species of Streptanthus (Brassicaceae). Oecologia 118:218–224

    Article  PubMed  Google Scholar 

  • Brito LO, Lopes AR, Parra JRP, Terra WR, Silva-Filho MC (2001) Adaptation of tobacco budworm Heliothis virescens to proteinase inhibitors may be mediated by synthesis of new proteinases. Comp Biochem Physiol B 128:365–370

    Article  CAS  PubMed  Google Scholar 

  • Britto DT, Kronzucker HJ (2008) Cellular mechanisms of potassium transport in plants. Physiol Plant. https://doi.org/10.1111/j.1399-3054

    Article  PubMed  Google Scholar 

  • Cao J, Zhao J-Z, Tang JD, Shelton AM, Earle ED (2002) Broccoli plants with pyramided cry1Ac and cry1C Bt genes control diamondback moths resistant to Cry1A and Cry1C proteins. Theor Appl Genet 105:258–264

    Article  CAS  PubMed  Google Scholar 

  • Chamarthi SK, Sharma HC, Sahrawat KL, Narasu LM, Dhillon MK (2010) Physico-chemical mechanisms of resistance to shoot fly, Atherigona soccata in sorghum, Sorghum bicolor. J Appl Entomol 135:446–455

    Article  Google Scholar 

  • Cowgill UM and Prance GT (1989) A Comparison of the Chemical Composition of Injured Leaves in Contrast to Uninjured Leaves of Victoria amazonica (Nymphaeaceae). Ann Bot 64:697–706

    Article  CAS  Google Scholar 

  • De Vos M, Van Zaanen W, Koornneef A, Korzelius JP, Dicke M, Van Loon LC, Corné MJ (2006) Pieterse. Herbivore-induced resistance against microbial pathogens in arabidopsis. Plant Physiol 142:352–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding SM, Liang T, Zhang CS, Yan JC, Zhang ZL (2005) Accumulation and fractionation of rare earth elements (REEs) in wheat: controlled by phosphate precipitation, cell wall absorption and solution complexation. J Exp Bot 56:2765–2775

    Article  CAS  PubMed  Google Scholar 

  • Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25:417–440

    Article  CAS  Google Scholar 

  • Duffey SS, Stout MJ (1996) Antinutritive and toxic components of plant defense against insects. Arch Insect Biochem Physiol 32:3–37

    Article  CAS  Google Scholar 

  • Felton GW, Bi JL, Summers CB, Mueller AJ, Duffey SS (1994) Potential role of lipoxygenases in defense against insect herbivory. J Chem Ecol 20:651–666

    Article  CAS  PubMed  Google Scholar 

  • Fernandes GW, De Marco JP, Schönrogge K (2008) Plant organ abscission and the green island effect caused by gallmidges (Cecidomyiidae) on tropical trees. Arthropod-Plant Interact 2:93–99

    Article  Google Scholar 

  • Ferree DC, Hall FR (1980) Effects of soil water stress and two spotted spider mites on net photosynthesis and transpiration of apple leaves. Photosynth Res 1:189–197

    Article  CAS  PubMed  Google Scholar 

  • Fritz RS (1990) Effects of genetic and environmental variation on resistance of willow to sawflies. Oecologia 82:325–332

    Article  PubMed  Google Scholar 

  • Garnier M, Zreik L, Bové JM (1991) Witches’ broom, a lethal mycoplasmal disease of lime trees in the Sultanate of Oman and the United Arab Emirates. Plant Dis 75:546–551

    Article  Google Scholar 

  • Govindaraju K (1994) Compilation of working values and sample description for 383 geostandards. Geostand Newsl 18(Special Issue):1–158

    Article  CAS  Google Scholar 

  • Gruner DS, Smith JE, Seabloom EW, Sandin SA, Ngai JT, Hillebrand H (2008) A cross system synthesis of consumer and nutrient resource control on producer biomass. Ecol Lett 11:740–755

    Article  PubMed  Google Scholar 

  • Hare JD (2011) Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annu Rev Entomol 56:161–180

    Article  CAS  PubMed  Google Scholar 

  • Hillebrand H, Gruner DS, Borer ET, Bracken MES, Cleland EE, Elser JJ (2007) Consumer versus resource control of producer diversity depends on ecosystem type and producer community structure. Proc Natl Acad Sci USA 104:10904–10909

    Article  CAS  PubMed  Google Scholar 

  • Huber DM, Graham RD (1999) The role of nutrition in crop resistance and tolerance to disease. In: Rengel Z (ed) Mineral nutrition of crops fundamental mechanisms and implications. Food Product Press, New York, pp 205–226

    Google Scholar 

  • Jhee EM, Boyd RS, Eubanks MD, Davis MA (2006) Nickel hyperaccumulation by Streptanthus polygaloides protects against the folivore Plutella xylostella (Lepidoptera: Plutellidae). Plant Ecol 183:91–104

    Article  Google Scholar 

  • Jongsma MA, Bolter C (1997) The adaptation of insects to plant protease inhibitors. J Insect Physiol 43:885–895

    Article  CAS  PubMed  Google Scholar 

  • Karban R (1992) Plant variation: its effects on populations of herbivorous insects. In: Fritz RS, Simms EL (eds) Plant resistance to herbivores and pathogens: ecology, evolution and genetics. University of Chicago Press, Chicago, pp 195–215

    Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Karban R, Myers JH (1989) Induced plant responses to herbivory. Annu Rev Ecol Syst 20:331–348

    Article  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144

    Article  CAS  PubMed  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Ann Rev Plant Biol 53:299–328

    Article  CAS  Google Scholar 

  • Khattab H (2007) The Defense Mechanism of cabbage plant against phloem-sucking aphid (Brevicoryne brassicae L.). Austral J Basic Appl Sci 1:56–62

    CAS  Google Scholar 

  • Maathuis FJM (2014) Sodium in plants: perception, signaling, and regulation of sodium fluxes. J Exp Bot 65:849–858

    Article  CAS  PubMed  Google Scholar 

  • Maathuis FJM, Verlin D, Smith FA, Sanders D, Fernández JA, Walker NA (1996) The physiological relevance of Na+-coupled K+-transport. Plant Physiol 11:1609–1616

    Article  Google Scholar 

  • Martens SN, Boyd RS (1994) The ecological significance of nickel hyperaccumulation: a plant chemical defense. Oecologia 98:379–384

    Article  PubMed  Google Scholar 

  • Martens SN, Boyd RS (2002) The defensive role of Ni hyperaccumulation by plants: a field experiment. Am J Bot 89:998–1003

    Article  PubMed  Google Scholar 

  • Mäser P, Gierth M, Schroeder JI (2002) Molecular mechanisms of potassium and sodium uptake in plants. Plant Soil 247:43–54

    Article  Google Scholar 

  • Mathews S, Maa LQ, Rathinasabapathi B, Stamps RH (2009) Arsenic reduced scale-insect infestation on arsenic hyperaccumulator Pteris vittata L. Environ Exp Bot 65:282–286

    Article  CAS  Google Scholar 

  • McPartland JM, Clarke RC, Watson DP (2000) Hemp diseases and pests management and biological control. Cabi Publishing, New York, USA

    Book  Google Scholar 

  • Miles PW (1989) The Responses of plants to the feeding of Aphidoidea: principles. In: Minks AK, Harrewijn P (eds) World crop pests. Elsevier, New York, pp 1–63

    Google Scholar 

  • Mutikainen P, Walls M, Ovaska J, Keinanen M, Julkunem-Tiitto R, Vapaavuori H (2000) Herbivore resistance in Betula pendula: effect of fertilization, defoliation, and plant genotype. Ecology 81:49–65

    Article  Google Scholar 

  • Ozaki T, Enomoto S (2001) Uptake of rare earth elements by Dryopteris erythrosora (autumnfern). Riken Rev 35:84–87

    CAS  Google Scholar 

  • Paré PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–332

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng JY, Li ZH, Xiang H, Huang JH, Jia SH, Miao XX, Huang YP (2005) Preliminary studies on differential defense responses induced during plant communication. Cell Res 15:187–192

    Article  CAS  PubMed  Google Scholar 

  • Prittinen K, Pusenius J, Koivunoro K, Roininen H (2003) Genotypic variation in growth and resistance to insect herbivory in silver birch (Betula pendula) seedlings. Oecologia 137:572–577

    Article  PubMed  Google Scholar 

  • Razvi SA, Al Shidi R, Al Zadjali NM, Al Raeesy YM (2007) Hemipteran hopper species associated with acid lime plants (Citrus aurantifolia L) in the Sultanate of Oman: candidate vectors of Witches’-Broom disease of lime. Agric Mar Sci 12:53–65

    Google Scholar 

  • Samuel J, Rouault R, Besnus Y (1985) Analyse multi-élémentaire standardisée des matériaux géologiques en spectrométrie d’émission par plasma à couplage inductif. Analusis 13:312–317

    CAS  Google Scholar 

  • Semhi K, Chaudhuri S, Clauer N (2009) Fractionation of rare-earth elements in plants during an experimental growth in varied clay substrates. Appl Geochem 24:447–453

    Article  CAS  Google Scholar 

  • Silva IM, Eiras AE, Kline DL, Bernier UR (2005) Laboratory evaluation of mosquito traps baited with a synthetic human odor blend to capture Aedes aegypti. J Am Mosq Control Assoc 21:229–233

    Article  PubMed  Google Scholar 

  • Skuhravý V, Skuhravá M, Brewer JW (1980) Evaluation of plant damage caused by three species of gall midges (Diptera: Cecidomyiidae). J Appl Entomol 90:184–190

    Google Scholar 

  • Stamp NE (1994) Simultaneous effects of potassium, rutin and temperature on performance of Manduca sexta caterpillars. Entomologia Experimentalis et Applicata 72:135–143

    Article  CAS  Google Scholar 

  • Strauss SY, Agrawal AA (1999) The ecology and evolution of plant tolerance to herbivory. Trends Ecol Evol 14:179–185

    Article  CAS  PubMed  Google Scholar 

  • Turley NE, Johnson MTJ (2015) Ecological effects of aphid abundance, genotypic variation, and contemporary evolution on plants. Oecologia. https://doi.org/10.1007/s00442-015-3276-8

    Article  PubMed  Google Scholar 

  • Tyler G (2004) Rare earth elements in soil and plant systems—a review. Plant Soil 267:191–206

    Article  CAS  Google Scholar 

  • Usha RP, Jyothsna Y (2010) Biochemical and enzymatic changes in rice as a mechanism of defense. Acta Physiol Plant 32:695–701

    Article  CAS  Google Scholar 

  • Utsumi S, Ando Y, Craig TP, Ohgushi T (2011) Plant genotypic diversity increases population size of a herbivorous insect. Proc Biol Sci 278:3108–3115

    Article  PubMed  PubMed Central  Google Scholar 

  • Voelckel C, Baldwin IT (2004) Generalist and specialist lepidopteran larvae elicit different transcriptional responses in Nicotiana attenuata, which correlate with larval FAC profiles. Ecol Lett 7:770–775

    Article  Google Scholar 

  • Wang M, Zheng Q, Shen Q, GuO S (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14:7370–7390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • War AR, Paulraj MG, War MY (2011) Ignacimuthu S. Herbivore- and elicitor-induced resistance in groundnut to Asian armyworm, Spodoptera litura (Fab.), (Lepidoptera: Noc tuidae). Plant Signal Behav 6:1769–1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7:1306–1320

    Article  PubMed  PubMed Central  Google Scholar 

  • Wittstock U, Gershenzon J (2002) Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr Opin Plant Biol. https://doi.org/10.1016/s1369-5266(02)00264-9

    Article  PubMed  Google Scholar 

  • Wu JC, Qiu ZH, Ying JL, Dong B, Gu HN (2004a) Changes of zeatin riboside content in rice plants due to infestation by Nilaparvata lugens (Homoptera: Delphacidae). J Econ Entomol 97:1917–1922

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Sun LVJ, Vamarhevan M, Riegler R, Deboy JC, Brownlie EA, McGraw W, Maertin C, Esser N, Ahmadinejad et al (2004b) Phylogenomics of the reproductive parasite Wolbachia pipientis w Mel: a streamlined genome overrun by mobile genetic elements. PloS Biol 2:E69

    Article  PubMed  PubMed Central  Google Scholar 

  • Wyttenbach A., Furrer V, Schleppi P, Tobler L (1998) Rare earth elements in soil and in soil-grown plants. Plant Soil 199:267–273

    Article  CAS  Google Scholar 

  • Zangerl AR, Arntz AM, Berenbaum MR (1997) Physiological price of an induced chemical defense: photosynthesis, respiration, biosynthesis, and growth. Oecologia 109:433–441

    Article  CAS  PubMed  Google Scholar 

  • Zheng SJ, Dicke M (2008) Ecological Genomics of plant–insect interactions: from gene to community. Plant Physiol 146:812–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Clauer.

Additional information

The original version of this article was revised: In the original publication, article title was incorrectly published and this has been corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semhi, K., Clauer, N. & Al-Raeesi, A.A. Impact of leaf infestation by herbivorous insects on the elemental uptake of citrus trees. J Plant Dis Prot 126, 67–76 (2019). https://doi.org/10.1007/s41348-018-0192-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-018-0192-2

Keywords

Navigation