Advertisement

Journal of Plant Diseases and Protection

, Volume 125, Issue 4, pp 405–413 | Cite as

Morphological and molecular characterization of Colletotrichum nymphaeae and C. fructicola associated with anthracnose symptoms of grape in Santa Catarina State, southern Brazil

  • Claudia Aparecida Guginski-Piva
  • Amauri Bogo
  • Beatriz Ribeiro Gomes
  • Jessica Karine Menon
  • Rubens Onofre Nodari
  • Leocir José WelterEmail author
Original Article
  • 120 Downloads

Abstract

Recent review described that grape anthracnose in Brazil is caused by Elsinoe ampelina. However, in many countries, anthracnose can be associated with different species of Colletotrichum. A group of 20 isolates obtained from leaves and shoots of grapes genotypes showing typical anthracnose symptoms were characterized using morphological criteria, species-specific PCR and internal transcribed spacer (ITS) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) sequencing. Two morphological types (I and II) were identified on the basis of colony appearance and conidial shape. Type I (Colletotrichum acutatum complex) produced colonies of flat growth salmon concentric rings and short cylindrical conidia measuring 13 × 5.73 µm. Type II (C. gloeosporioides complex) produced cotton growth white colonies and cylindrical conidia with both ends rounded and the same size as in type I. Phylogenetic trees based on Bayesian inference and using combined ITS and GAPDH sequence alignment exhibited five main clades, which represented the species of C. acutatum (C. nymphaeae) and C. gloeosporioides (C. fructicola) complexes. The standard isolates of type I CB-a (Cnymphaeae) and type II CB-g (Cfructicola) were pathogenic to potted vines of the Niagara cultivar 1 week after inoculation. This is the first report of the occurrence of Cnymphaeae and Cfructicola associated with grape anthracnose symptoms in Santa Catarina State, southern Brazil.

Keywords

Vitis sp. Diagnostic PCR Internal transcribed spacer (ITS) Phylogenic analysis 

Notes

Funding

This study was funded by FAPESC (Santa Catarina State Foundation for Scientific and Technological Development—Grant Number TR-2012-0066), CNPq (The National Council for Scientific and Technological Development—Grant Number Edital 2015) and CAPES.

Compliance with ethical standards

Conflict of interest

All authors declare no conflict of interest.

References

  1. Alaniz S, Hernández L, Mondino P (2016) Colletotrichum fructicola is the dominant and one of the most aggressive species causing bitter rot of apple in Uruguay. Trop Plant Pathol 40:265–274CrossRefGoogle Scholar
  2. Biomatters (2016) Geneious Basic 10.0.5 software. Biomatters Ltd, AucklandGoogle Scholar
  3. Bragança CAD, Ulrike D, Baroncelli R, Nelson S, Massola Junior NS, Crous PW (2016) Species of the Colletotrichum acutatum complex associated with anthracnose diseases of fruit in Brazil. Fungal Biol 120:547–561CrossRefPubMedGoogle Scholar
  4. Cannon PF, Damm U, Johnston PR, Weir BS (2012) Colletotrichum current status and future directions. Stud Mycol 73:181–213CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chowdappa P, Reddy GS, Kumar A, Rao BM, Rawal RD (2009) Morphological and molecular characterization of Colletotrichum species causing anthracnose of grape in India. The Asian and Australasian. J Plant Sci Biotechnol 3:71–77Google Scholar
  6. Damm U, Cannon PF, Woudenberg JHC, Crous PW (2012) The Colletotrichum acutatum species complex. Stud Mycol 73:37–113CrossRefPubMedPubMedCentralGoogle Scholar
  7. dos Santos RF, Spósito MB, Ayres MR, Sosnowski MR (2018a) Phylogeny, morphology and pathogenicity of Elsinoë ampelina, the causal agent of grapevine anthracnose in Brazil and Australia. J Phytopathol 166:187–198CrossRefGoogle Scholar
  8. dos Santos RF, Ciampi-Guillardi M, Amorim L, Massola Júnior NS, Spósito MB (2018b) Aetiology of anthracnose on grapevine shoots in Brazil aetiology of anthracnose on grapevine shoots in Brazil. Plant Pathol 67:692–706CrossRefGoogle Scholar
  9. Ellis MA, Erincik O (2008) Anthracnose of grape. Agric Nat Resour 01:1–3Google Scholar
  10. Feitosa MI, Feichtenberger M, Kudamatsu M, Rossetti V, Leite R (1977) Estudos sobre a população de Colletotrichum em Coffea arabica L, no Estado de São Paulo. Arquivo do Instituto Biológico 44:33–54Google Scholar
  11. Hyde KD, Cai L, Cannon PF, Crouch JA, Pw C, Damm U, Goodwin PH, Chen H, Johnston PR, Jones EBG, Liu ZY, McKenzie EHC, Moriwaki J, Noireung P, Pennycook SR, Pfenning LH, Prihastuti H, Sato T, Shivas RG, Tan YP, Taylor PWJ, Weir BS, Yang YL, Zhang JZ (2009) Colletotrichum names in current use. Fungal Divers 39:147–182Google Scholar
  12. IBGE/CEPAGRO (2016) Levantamento sistemático da produção agrícola, 2016. ftp://ftp.ibge.gov.br/Producao_Agricola/Levantamento_Sistematico_da_Producao_Agricola_%5Bmensal%5D/Fasciculo/2016/lspa_201609.pdf. Accessed 11 July 2018
  13. Jingjing J, Hongyan Z, Huannan L, Zhenhua W, Yongsen C, Ni H, Guoping W, Nchongboh C, Wenxing X (2014) Identification and characterization of Colletotrichum fructicola causing black spots on young fruits related to bitter rot of pear (Pyrus bretschneideri Rehd.) in China. Crop Prot 58:41–48CrossRefGoogle Scholar
  14. Louime C, Lu J, Onokpise O, Vasanthaiah HKN, Kambiranda D, Basha SM, Yun HK (2011) Resistance to Elsinoe ampelina and expression of related resistant genes in Vitis rotundifolia Michx. grapes. Int J Mol Sci 12:3473–3488CrossRefPubMedPubMedCentralGoogle Scholar
  15. Mills PR, Hodson A, Brown AE (1992) Molecular differentiation of Colletotrichum gloeosporioides isolates infecting tropical fruit. In: Bailey JA, Jeger MJ (eds) Colletotrichum: Biology, pathology and control. CAB International, Wallingford, pp 269–288Google Scholar
  16. Munir M, Amsden E, Dixon L, Vaillancourt L, Ward Gauthier NA (2016) Characterization of Colletotrichum species causing bitter rot of apple in Kentucky orchards. Plant Dis 100:2194–2203CrossRefGoogle Scholar
  17. International Organization of Vine and Wine (OIV) (2016) OIV 2016: Panorama Mundial. https://vinhosemsegredo.wordpress.com/2015/07/27/oiv-2015-panorama-mundial/. Accessed 11 July 2018
  18. Poolsawat O, Tharapreuksapong A, Wongkaew SE, Tantasawat P (2009) Cultural characteristics of Sphaceloma ampelinum, causal pathogen of grape anthracnose on different media. Suranaree J Sci Technol 16:149–157Google Scholar
  19. Rockenbach MF, Velho AC, Gonçalves AE, Mondino PE, Alaniz SM, Stadnik MJ (2016) Genetic structure of Colletotrichum fructicola associated to apple bitter rot and Glomerella leaf spot in Southern Brazil and Uruguay. Phytopathology 106:774–781CrossRefPubMedGoogle Scholar
  20. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542CrossRefPubMedPubMedCentralGoogle Scholar
  21. Sawant IS, Narkar SP, Shetty DS, Upadhyay A, Sawant SD (2012) Emergence of Colletotrichum gloeosporioides sensu lato as the dominant pathogen of anthracnose disease of grapes in India as evidenced by cultural, morphological and molecular data. Australas Plant Pathol 41:493–503CrossRefGoogle Scholar
  22. Schilder AMC, Smokevitch SM, Catal M, Mann WK (2005) First report of anthracnose caused by Elsinoë ampelina on grapes in Michigan. Plant Dis 89:1011–1015CrossRefGoogle Scholar
  23. Schiller M, Lubek M, Sundelin T, Melendez LFC (2006) Two subpopulations of Colletotrichum acutatum are responsible for anthracnose in strawberry and leather leaf fem in Costa Rica. Eur J Plant Pathol 116:107–118CrossRefGoogle Scholar
  24. Sheu Z, Wang T (2005) Evaluation of phenotypic and molecular criteria for the identification of Colletotrichum species causing pepper anthracnose in Taiwan. In: Proceedings of the second Asian conference on plant pathology, Singapore, 25–28 June 2005. Plant Protection Society, Singapore, pp 26–27Google Scholar
  25. Smith BJ, Black LL (1990) Morphological, cultural and pathogenic variation among Colletotrichum species isolated from strawberry. Plant Dis 74:69–76CrossRefGoogle Scholar
  26. Souza JSI, Pinheiro ED (1996) Pragas e moléstias. In: Sousa JSI (ed) Uvas para o Brasil. 2 ed. rev. e atual. FEALQ, Piracicaba, pp 609–727Google Scholar
  27. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  28. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  29. Timmer LW, Brown GE, Zitko SE (1998) The role of Colletotrichum spp. in post-harvest anthracnose of citrus and survival of C. acutatum on fruit. Plant Dis 82:415–418CrossRefGoogle Scholar
  30. Urena-Padilla AR, MacKenzie SJ, Bowen BW, Legard DE (2002) Etiology and population genetics of Colletotrichum spp causing crown and fruit rot of strawberry. Phytopathology 92:1245–1252CrossRefPubMedGoogle Scholar
  31. Vasanthaiah HKN, Katam R, Basha SM (2009) Characterization of unique and differentially expressed proteins in anthracnose tolerant Florida hybrid bunch grapes. Appl Biochem Biotechnol 157:395–406CrossRefPubMedGoogle Scholar
  32. Velho AC, Stadnik MJ, Casanova L, Mondino P, Alaniz S (2014) First report of Colletotrichum nymphaeae causing apple bitter rot in southern Brazil. Plant Dis 98:567CrossRefGoogle Scholar
  33. Weir BS, Johnston PR, Damm U (2012) The Colletotrichum gloeosporioides species complex. Stud Mycol 73(1):115–180CrossRefPubMedPubMedCentralGoogle Scholar
  34. Wharton PS, Diéguez-Uribeondo J (2004) The biology of Colletotrichum acutatum. An Jard Bot Madr 61:3–22CrossRefGoogle Scholar
  35. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T (eds) PCR protocols, a guide to methods and applications. Academic, San Diego, pp 315–322Google Scholar
  36. Yun HK, Louime C, Lu J (2007) First report of anthracnose caused by Elsinoe ampelina on muscadine grapes (Vitis rotundifolia) in northern Florida. Plant Dis 91:905CrossRefGoogle Scholar
  37. Zolan M, Pukkila P (1986) Inheritance of DNA methylation in Coprinus cinereus. Mol Cell Biol 6:195–200CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Deutsche Phytomedizinische Gesellschaft 2018

Authors and Affiliations

  • Claudia Aparecida Guginski-Piva
    • 1
  • Amauri Bogo
    • 1
  • Beatriz Ribeiro Gomes
    • 1
  • Jessica Karine Menon
    • 1
  • Rubens Onofre Nodari
    • 2
  • Leocir José Welter
    • 3
    Email author
  1. 1.Santa Catarina State UniversityLagesBrazil
  2. 2.Federal University of Santa CatarinaFlorianópolisBrazil
  3. 3.Federal University of Santa CatarinaCuritibanosBrazil

Personalised recommendations