Advertisement

Journal of Plant Diseases and Protection

, Volume 125, Issue 4, pp 357–364 | Cite as

Compatibility of insecticides and Elachertus inunctus Nees (Hymenoptera: Eulophidae) for controlling Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) in greenhouse condition

  • Fatemeh YarahmadiEmail author
  • Zohreh Salehi
  • Hossein Lotfalizadeh
Original Article
  • 117 Downloads

Abstract

South American Tomato Pinworm (SATP), Tuta absoluta Meyrick (Lepidoptera: Gelechiidae), is one of the most devastating pests in tomato greenhouses. Efficacy of some chemical and biorational insecticides, namely chlorfenapyr, thiocyclam, azadirachtin and Bacillus thuringiensis (Bt), in controlling SATP and their compatibility with Elachertus inunctus, a new SATP larval ectoparasitoid, were studied under greenhouse conditions. For this purpose, larval mortality, leaf and fruit damage and parasitism following the different insecticide treatments and after various days from the treatment (DAT) were recorded and compared to untreated control. Results showed that chlorfenapyr had suitable effects on SATP larvae. Although the experiments indicated that the short-term effects of azadirachtin, thiocyclam and Bt were not detrimental to SATP larvae, but their residual effects were significant in the long term. Among the tested insecticides, Bt was more compatible with E. innunctus release. Overall, the results suggest that the integration application of Bt with early inundate release of E. innunctus can be recommended for suitable and environmentally safe control of SATP in greenhouse tomato.

Keywords

Parasitic wasps Bio-insecticides Tomato leaf miner IPM 

Notes

Acknowledgements

This research was supported by research deputy of Khuzestan Agricultural Sciences and Natural Resources University [Grant Number 941/09].

References

  1. Abou-Fakhr Hammad EM, McAuslane HJ (2010) Effect of Melia azedarach L. extract on Liriomyza sativae (Diptera: Agromyzidae) and its biocontrol agent Diglyphus isaea (Hymenoptera: Eulophidae). J Food Agric Environ 8(34):1247–1252Google Scholar
  2. Akol AM, Sithanatham S, Varela AM, Mueke JM, Okelo RO (2001) Evaluation of two neem insecticides for non-target effects on the larval parasitoids of the diamondback moth, Plutella xylostella (L.). In: Proceeding of the 41th international workshop; Melbourne, Australia, November 26–29Google Scholar
  3. Arnò J, Gabarra R (2011) Side effects of selected insecticides on the Tuta absoluta (Lepidoptera: Gelechiidae) predators Macrolophus pygmaeus and Nesidiocoris tenuis (Hemiptera: Miridae). J Pest Sci 84(4):513–520.  https://doi.org/10.1007/s10340-011-0384-z CrossRefGoogle Scholar
  4. Baniameri V, Cheraghian A (2012) The current status of Tuta absoluta in Iran and initial control strategies. In: EPPO/IOBC/FAO/NEPPO joint international symposium on management of Tuta absoluta (tomato borer). Agadir, Morocco, November 16–18Google Scholar
  5. Biondi A, Desneux N, Siscaro G, Zappala L (2012a) Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: Selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere 87:803–812.  https://doi.org/10.1016/j.chemosphere.2011.12.082 CrossRefPubMedGoogle Scholar
  6. Biondi A, Mommaerts V, Smagghe G, Viñuela E, Zappalá L, Desneux N (2012b) The non-target impact of spinosyns on beneficial arthropods. Pest Manag Sci 68(12):1523–1536CrossRefPubMedGoogle Scholar
  7. Biondi A, Zappalá L, Desneux N (2013) Do biopesticides affect the demographic traits of a parasitoid wasp and its biocontrol services through sublethal effects? PLoS ONE 8(9):e76548.  https://doi.org/10.1371/journal.pone.0076548.eCollection CrossRefPubMedPubMedCentralGoogle Scholar
  8. Biondi A, Guedes RNC, Wan FH, Desneux N (2018) Ecology, worldwide spread and management of the invasive South American Tomato Pinworm, Tuta absoluta: past, present, and future. Ann Rev Entomol 63:239–258.  https://doi.org/10.1146/annurev-ento-031616-034933 CrossRefGoogle Scholar
  9. Braham M, Hajji L (2012) Management of Tuta absoluta (Lepidoptera, Gelechiidae) with insecticides on tomatoes. In: Perveen F (ed) Insecticides pest engineering. In Tech, Rijeka, pp 333–354Google Scholar
  10. Braham M, Glida-Gnidez H, Hajji L (2012) Management of the tomato borer, Tuta absoluta in Tunisia with novel insecticides and plant extracts. OEPP/EPPO Bull 42(2):291–296.  https://doi.org/10.1111/epp.2572 CrossRefGoogle Scholar
  11. Brunner JF, Dunley JE, Doerr MD, Beers EH (2001) Effect of pesticides on Coloclypeus florus (Hymenoptera: Eulophidae) and Trichogramma platneri (Hymenoptera: Trichogrammatidae) parasitoids of leafrollers in Washington. J Econ Entomol 94(5):1072–1084.  https://doi.org/10.1603/0022-0493-94.5.1075 CrossRefGoogle Scholar
  12. Campos MR, Biondi A, Adiga A, Guedes RNC, Desneux N (2017) From the western palaearctic region to beyond: Tuta absoluta ten years after invading Europe. J Pest Sci 90:787–796.  https://doi.org/10.1007/s10340-017-0867-7 CrossRefGoogle Scholar
  13. Chilcutt CF, Tabashnik BE (1999) Effects of Bacillus thuringiensis on adults of Cotesia plutellae (Hymenoptera: Braconidae), a parasitoid of the Diamondback Moth, Plutella xylostella (Lepidoptera: Plutellidae). Biocontrol Sci Technol 9(3):435–440.  https://doi.org/10.1080/09583159929695 CrossRefGoogle Scholar
  14. Cloyd R (2005) Compatibility conflict: Is the use of biological control agents with pesticides a viable management strategy? In: Second international symposium on biological control of arthropods; Davos, Switzerland, September 12–16Google Scholar
  15. Cloyd R (2005) Compatibility conflict: is the use of biological control agents with pesticides a viable management strategy? In: Second international symposium on biological control of arthropods, Compiler, University of California, Riverside, USAGoogle Scholar
  16. Copping LG, Menn JJ (2000) Biopesticides: a review of their mode of action and efficacy. Pest Manag Sci 56:651–676. https://doi.org/10.1002/1526-4998(200008)56:8<651:AID-PS201>3.0.CO;2-UGoogle Scholar
  17. Croft BA (1990) Arthropod biological control agents and pesticides. Wiley Interscience, New YorkGoogle Scholar
  18. Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106.  https://doi.org/10.1146/annurev.ento.52.110405.091440 CrossRefPubMedGoogle Scholar
  19. Desneux N, Wajnberg E, Wyckhuys KAG, Burgio G, Arpaia S, Narvez-Vasquez CA, Gonalez-Cabrera J, Catalan Ruescas D, Frandon TE (2010) Biological invasion of European tomato crops by Tuta absoluta: Ecology, geographic expansion and prospects for biological control. J Pest Sci 83(3):197–215.  https://doi.org/10.1007/s10340-010-0321-6 CrossRefGoogle Scholar
  20. Desneux N, Luna MG, Guillemaud T, Urbaneja A (2011) The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond—the new threat to tomato world production. J Pest Sci 84:403–408CrossRefGoogle Scholar
  21. Glare T, Caradus J, Gelerner W, Jackson T, Keyhani N, Kohl J, Marrone P, Morin L, Stewart A (2012) Have biopesticides come of age? Trends Biotech 30(5):250–258.  https://doi.org/10.1016/j.tibtech.2012.01.003 CrossRefGoogle Scholar
  22. Gozalez-Caberera J, Mollá O, Monton H, Urbaneja A (2001) Efficacy of Bacillus thuringiensis (Berliner) in controlling the tomato borer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Biocontrol 56:71–80.  https://doi.org/10.1007/s10526-010-9310-1 CrossRefGoogle Scholar
  23. Greenberg SM, Showler AT, Liu TX (2005) Effects of neem-based insecticides on beet armyworm (Lepidoptera: Noctuidae). Insect Sci 12(1):17–23.  https://doi.org/10.1111/j.1672-9609.2005.00003.x CrossRefGoogle Scholar
  24. Guedes RNC, Picanço MC (2012) The tomato borer Tuta absoluta in South America: pest status, management and insecticide resistance. EPPO Bull 42(2):211–216.  https://doi.org/10.1111/epp.2557 CrossRefGoogle Scholar
  25. Guedes RNC, Siqueira HAA (2012) The tomato borer Tuta absoluta: insecticide resistance and control failure. CAB Rev 7(55):1–7CrossRefGoogle Scholar
  26. Hamel DR (1977) The effects of Bacillus thuringiensis on parasitoids of the western spruce budworm, Choristoneura occidentals (Lepidoptera: Tortricidae), and the sprouce coneworm, Diorycteia reniculelloids (Lepidoptera: Pyralidae) in montana. Cana Entomol 109(11):1409–1415CrossRefGoogle Scholar
  27. Haseeb M, Amano H (2002) Effects of contact, oral and persistent toxicity of selected pesticides on Cotesia plutellae (Hym., Braconidae), a potential parasitoid of Plutella xylostella (Lep., Plutellidae). J App Entomol 126(1):8–13.  https://doi.org/10.1046/j.1439-0418.2002.00596.x CrossRefGoogle Scholar
  28. Haseeb M, Liu TX, Jones WA (2004) Effects of selected insecticides on Cotesia plutellae, endoparasitoid of Plutella xylostella. BioContr 49(1):33–46.  https://doi.org/10.1023/B:BICO.0000009377.75941.d7 CrossRefGoogle Scholar
  29. Haseeb M, Amano H, Liu TX (2005) Effects of selected insecticides on Diadegma semiclausum (Hymenoptera: Ichneumonidae) and Oomyzus sokolowskii (Hymenoptera: Eulophidae), parasitoids of Plutella xylostella (Lepidoptera: Plutellidae). Insect Sci 12(3):163–170.  https://doi.org/10.1111/j.1005-295X.2005.00020.x CrossRefGoogle Scholar
  30. Ibrahim AM, Kim Y (2008) Transient expression of protein tyrosine phosphatases encoded in Cotesia plutellae bracovirus inhibits insect cellular immune responses. Naturwissenschaften 95(1):25–32.  https://doi.org/10.1007/s00114-007-0290-7 CrossRefPubMedGoogle Scholar
  31. Isman MB (2015) A renaissance for botanical insecticides? Pest Manag Sci 71(12):1587–1590.  https://doi.org/10.1002/ps.4088 CrossRefPubMedGoogle Scholar
  32. Kapuge S, McDougall S, Hoffmann AA (2003) Effects of methoxyfenozide, indoxacarb, and other insecticides on the beneficial egg parasitoid Trichogramma nr. brassicae (Hymenoptera:Trichogrammatidae) under laboratory and field conditions. J Econ Entomol 96(4):1083–1090.  https://doi.org/10.1603/0022-0493-96.4.1083 CrossRefGoogle Scholar
  33. Kleeberg H (2001) NeemAzal-T/S a botanical product for efficient control of insect pests. In: Soares de Faria R, Kleeberg H (eds) Practice oriented results on use and production of plant extracts and pheromones in integrated and biological pest control. Proc. 2nd workshop “neem and pheromones”. Trifolio-GmbH, Lahnau, pp 28–35Google Scholar
  34. Liang GM, Chen W, Liu TX (2003) Effects of three neem-based insecticides on diamondback moth (Lepidoptera: Plutellidae). Crop Protec 22(2):333–340.  https://doi.org/10.1016/S0261-2194(02)00175-8 CrossRefGoogle Scholar
  35. Lietti M, Botto E, Alzogaray RA (2005) Insecticide resistance in Argentine populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotrop Entomol 34:113–119.  https://doi.org/10.1590/S1519-566X2005000100016 CrossRefGoogle Scholar
  36. Lowerey DT, Isman MB (1994) Insect growth regulating effects of neem extract and azadirachtin on aphids. Entomol Exp Appl 72:77–84.  https://doi.org/10.1111/j.1570-7458.1994.tb01804 CrossRefGoogle Scholar
  37. Luna-Cruz A, Rodriguez-Leyva E, Lomeli-Flores JR, Ortega-Arenas DL, Bautista-Martinez N, Pineda S (2015) Toxicity and residual activity of insecticides against Tamarixia triozae (Hymenoptera: Eulophidae), a parasitoid of Bactericera cockerelli (Hemiptera: Triozidae). J Econ Entomol 108(5):2289–2295.  https://doi.org/10.1093/jee/tov206 CrossRefPubMedGoogle Scholar
  38. Nazarpour L, Yarahmadi F, Saber M, Rajabpour A (2016) Short and long term effects of some bio-insecticides on Tuta absoluta Meyrick Lepidoptera: Gelechiidae) and its coexisting generalist predators in tomato fields. J Crop Protec 5(3):331–342.  https://doi.org/10.18869/modares.jcp.5.3.331 CrossRefGoogle Scholar
  39. Pedigo LP (2002) Entomology and pest management. Iowa University Press, Iowa CityGoogle Scholar
  40. Peralta C, Palma L (2017) Is the insect world overcoming the efficacy of Bacillus thuringiensis? Toxins 9:39.  https://doi.org/10.3390/toxins9010039 CrossRefPubMedCentralGoogle Scholar
  41. Pietrantonio PV, Benedict JH (1999) Effect of new cotton insecticide chemistries, tefenozide, spinosad and chlorfenapyr, on Orius insidiosus and two Cotesia species. Southwest Entomol 24(1):21–29Google Scholar
  42. Raghavendra K, Barik TK, Sharma P, Bhatt RM, Srivastava HC, Sreehari U, Dash AP (2011) Chlorfenapyr: a new insecticide with novel mode of action can control pyrethroid resistant malaria vectors. Malar J 10:16.  https://doi.org/10.1186/1475-2875-10-16 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Saad AS, Massoud MA, Abdel-Mageed AA, Hamid NA, Mourad AK, Barakat AS (2007) Abamectin, pymetrozine and azadirachtin sequence as a unique solution to control the leafminer Liriomyza trifolii (Burgess) (Diptera: Agromyzidae) infesting garden beans (Phaseolus vulgaris L.) in Egypt. Commun Agri Appl Biol Sci 72(3):583–593Google Scholar
  44. Sabbour MM, Soleiman N (2012) Evaluations of three Bacillus thuringiensis against Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in Egypt. Int J Sci Res 3(8):2067–2073.  https://doi.org/10.13140/RG.2.1.3355.37652015-07-22T15:25:42UTC CrossRefGoogle Scholar
  45. Sankarganesh E, Firake DM, Sharma B, Verma VK, Behere GT (2017) Invasion of South American Tomato Pinworm, Tuta absoluta, in northeastern India: a new challenge and biosecurity concerns. Entomol Gen 36(4):335–345CrossRefGoogle Scholar
  46. Santos MS, Zanardi OZ, Pauli KS, Forim MR, Yamamoto PT, Vendramim JD (2015) Toxicity of an azadirachtin-based biopesticide on Diaphorina citri Kuwayama (Hemiptera: Liviidae) and its ectoparasitoid Tamarixia radiata (Waterston) (Hymenoptera: Eulophidae). Crop Protec 74:116–123.  https://doi.org/10.1016/j.cropro.2015.04.015 CrossRefGoogle Scholar
  47. Schauff ME (1985) Taxonomic study of the Nearctic species of Elachertus Spinola (Hymenoptera: Eulophidae). Proc Entomol Soc Wash 87(4):843–858Google Scholar
  48. Silvério FO, de Alvarenga ES, Moreno SC, Picanço MC (2009) Synthesis and insecticidal activity of new pyrethroids. Pest Manage Sci 65:900–905.  https://doi.org/10.1002/ps.1771 CrossRefGoogle Scholar
  49. Singh G, Rup PJ, Koul O (2007) Acute, sublethal and combination effects of azadirachtin and Bacillus thuringiensis toxins on Helicoverpa armigera (Lepidoptera: Noctuidae) larvae. Bull Entomol Res 97(4):351–357.  https://doi.org/10.1017/S0007485307005019 CrossRefPubMedGoogle Scholar
  50. Soleiman MMM, Abdel-Moniem ASH, Abdel-Rahim HA (2013) Impact of some insecticides and their mixtures on the population of tomato borers, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) and Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in tomato crop at upper Egypt. Arch Phytopathol Plant Protect 47(14):1764–1776.  https://doi.org/10.1080/03235408.2013.857226 CrossRefGoogle Scholar
  51. Stark JD, Vargas R, Banks JE (2007) Incorporating ecologically relevant measures of pesticide effect for estimating the compatibility of pesticides and biocontrol agents. J Econ Entomol 100:1027–1032.  https://doi.org/10.1603/0022-0493(2007)100[1027:IERMOP]2.0.CO;2 CrossRefPubMedGoogle Scholar
  52. Sylla S, Brévault T, Bal AB, Chailleux A, Diatte M, Desneux N, Diarra K (2017) Rapid spread of the tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), an invasive pest in Sub-Saharan Africa. Entomol Gen 36(3):269–283CrossRefGoogle Scholar
  53. Urbaneja A, Desneux N, Gabarra R, Arno J, González-Cabrera J, Mafra-Neto A, Pinto ADS, Parra JRP (2013) Biology, ecology and management of the tomato borer, Tuta absoluta. In: Peña JE (ed) Potential invasive pests of agricultural crops. CABI Series, Wallingford, pp 98–125.  https://doi.org/10.1079/9781845938291.0098 CrossRefGoogle Scholar
  54. Vasconcelos GR (2013) Strain selection and host effect on Trichogramma pretiosum Riley, 1879 (Hymenoptera: Trichogrammatidae) quality for Tuta absoluta (Meyrick, 1917(Lepidoptera: Gelechiidae) control in tomato crops. Dissertation, University of Moura Lacerda, BrazilGoogle Scholar
  55. Wang SS, Guo ZL, Lio YL (2014) Acute toxicities and sublethal effects of some conventional insecticides on Trichogramma chilonis (Hymenoptera: Trichogrammatidae). J Econ Entomol 105(4):1157–1163.  https://doi.org/10.1603/EC12042 CrossRefGoogle Scholar
  56. Wilcox D, Shivakumar B, Melin MF, Miller TA, Benson CW, Shopp D, Casuto GJ, Gundling TJ, Bolling BB, Spear JL (1986) Genetic engineering of bio insecticides. In: Inouye M, Sarma R (eds) Protein engineering: applications in science, medicine, and industry. Academic, Orlando, pp 395–413Google Scholar
  57. Xian X, Han P, Wang S, Zhang G, Liu W, Desneux N, Wan F (2017) The potential invasion risk and preventive measures against the tomato leafminer Tuta absoluta in China. Entomol Gen 36(4):319–333CrossRefGoogle Scholar
  58. Yankova V (2012) Damage caused by tomato leaf miner (Tuta absoluta Meyrick) in tomato varieties grown in greenhouse. Plant Sci 49:92–97Google Scholar
  59. Yankova V, Valchev N, Markova D (2014) Effectiveness of phytopesticide Neem Azal T/S against tomato leaf miner (Tuta absoluta Meyrick) in greenhouse tomato. Bulg J Agric Sci 20:1116–1118Google Scholar
  60. Yarahmadi F, Salehi Z, Lotfalizadeh H (2016) Two species of the genus Elachertus Spinola (Hym.: Eulophidae) new larval ectoparasitoids of Tuta absoluta (Meyreck) (Lep.: Gelechidae). J Crop Protect 5(3):413–418CrossRefGoogle Scholar
  61. Yee WL, Toscano NC (2014) Laboratory evaluations of synthetic and natural insecticides on beet armyworm (Lepidoptera: Noctuidae) damage and survival on lettuce. J Econ Entomol 91(1):56–63.  https://doi.org/10.1093/jee/91.1.56 CrossRefGoogle Scholar
  62. Zabel A, Manojlovic B, Rajkovic S, Stankovic S, Kostic M (2002) Effect of Neem extract on Lymantria dispar L. (Lepidoptera: Lymantriidae) and Leptinotarsa decemlineata Say. (Coleoptera: Chrysomelidae). J Pest Sci 75(1):19–25.  https://doi.org/10.1046/j.1439-0280.2002.02006.x CrossRefGoogle Scholar
  63. Zappalà L, Bernardo U, Biondi A, Cocco A, Deliperi S, Delrio G, Giorgini M, Pedata P, Rapisarda C, Garzia GT, Siscaro G (2012) Recruitment of native parasitoids by the exotic pest Tuta absoluta in Southern Italy. Bull Insectology 65(1):51–61Google Scholar

Copyright information

© Deutsche Phytomedizinische Gesellschaft 2018

Authors and Affiliations

  • Fatemeh Yarahmadi
    • 1
    Email author
  • Zohreh Salehi
    • 1
  • Hossein Lotfalizadeh
    • 2
  1. 1.Department of Plant Protection, Faculty of AgricultureKhuzestan Agricultural Sciences and Natural Resources UniversityAhvaz (Mollasani)Iran
  2. 2.Department of Plant ProtectionEast-Azarbaijan Research Center for Agriculture and Natural ResourcesTabrizIran

Personalised recommendations