Journal of Plant Diseases and Protection

, Volume 125, Issue 3, pp 267–272 | Cite as

First detection and complete genome characterization of a Cherry (C) strain isolate of plum pox virus from sour cherry (Prunus cerasus) in Germany

  • Wilhelm JelkmannEmail author
  • Daniel Sanderson
  • Constanze Berwarth
  • Delano James
Original Article


An isolate of plum pox virus (PPV) was detected in sour cherry (Prunus cerasus) in the Eastern region of Germany. Symptoms observed on infected sour cherry included leaf chlorosis, vein clearing, leaf abnormality and dark spots and rings on fruit. The complete genome sequence of this PPV isolate (GC27) was determined. The virus genome consists of 9795 nucleotides (nt), excluding the poly(A) tail at the 3′ terminus, with 5′ and 3′ untranslated regions (UTRs) of 146 and 217 nt, respectively. Phylogenetic analysis based on the complete genome, the nucleotide sequence of the coat protein and the deduced amino acid sequence of the PIPO protein indicate that PPV isolate GC27 is a member of the Cherry (C) strain of PPV. In pairwise comparisons, the complete genome (nt) of isolate GC27 is 98.2–99.7% identical to other C isolates; with much lower identities for isolates of other strains including approximately 83% identity for isolates of the strain Cherry Russian. This is the first detection of a strain C isolate of PPV in Germany.


PPV Strain C First detection Sour cherry Isolate GC27 Complete genome Molecular characterization 



The authors wish to thank Mrs. Ulrike Holz, Land Office for Rural Development, Agriculture and Land Reform, Plant Protection, Müllroser Chaussee 54, 15236 Frankfurt, Germany, for providing the PPV-infected leaf samples.


  1. Atreya CD, Raccah B, Pirone P (1990) A point mutation in the coat protein abolishes aphid transmissibility of a potyvirus. Virology 178:161–165CrossRefPubMedGoogle Scholar
  2. Barba M, Hadidi A, Candresse T, Cambra M (2011) Plum pox virus. In: Hadidi A, Barba M, Candresse T, Jelkmann W (eds) Virus and virus-like diseases of pome and stone fruits. APS Press, St Paul, pp 185–197CrossRefGoogle Scholar
  3. Boscia D, Zeramdini H, Cambra M, Potere O, Gorris MT, Myrta A, Di Terlizzi B, Savino V (1997) Production and characterization of a monoclonal antibody specific to the M serotype of plum pox potyvirus. Eur J Plant Pathol 103:477–480CrossRefGoogle Scholar
  4. Calvo M, Martínez-Turiño S, García JA (2014) Resistance to Plum pox virus strain C in Arabidopsis thaliana and Chenopodium foetidum involves genome-linked viral protein and other viral determinants and might depend on compatibility with host translation initiation factors. Mol Plant Microbe Interact 27:1291–1301CrossRefPubMedGoogle Scholar
  5. Cambra M, Asensio M, Gorris MT, Pérez E, Camarasa E, García JA, Moya JJ, López-Abella D, Vela C, Sanz A (1994) Detection of plum pox potyvirus using monoclonal antibodies to structural and non-structural proteins. EPPO Bull 24:569–577CrossRefGoogle Scholar
  6. Chirkov S, Ivanov P, Sheveleva A (2013) Detection and partial molecular characterization of atypical Plum pox virus isolates from naturally infected sour cherry. Arch Virol 158:1383–1387CrossRefPubMedGoogle Scholar
  7. Chung BY-W, Miller WA, Atkins JF, Firth AE (2008) An overlapping essential gene in the Potyviridae. PNAS 105:5897–5902CrossRefPubMedPubMedCentralGoogle Scholar
  8. Crescenzi A, Nuzzaci M, Levy L, Piazzolla P, Hadidi A (1995) Plum pox virus (PPV) in sweet cherry. Acta Hortic 386:219–225CrossRefGoogle Scholar
  9. Deborré G, Maiss E, Jelkmann W (1995) Biological and molecular biological investigations of several Plum pox virus (PPV) isolates. Acta Hortic 386:253–262CrossRefGoogle Scholar
  10. Fanigliulo A, Comes S, Maiss E, Piazzolla P, Crescenzi A (2003) The complete nucleotide sequence of Plum pox virus isolates from sweet (PPV-SwC) and sour (PPV-SoC) cherry and their taxonomic relationships within the species. Arch Virol 148:2137–2153CrossRefPubMedGoogle Scholar
  11. García JA, Riechmann JL, Laín S, Martín MT, Guo H, Simon L, Fernández A, Domínguez E, Cervera MT (1994) Molecular characterization of plum pox potyvirus. EPPO Bull 24:543–553CrossRefGoogle Scholar
  12. García JA, Glasa M, Cambra M, Candresse T (2014) Plum pox virus and sharka: a model potyvirus and a major disease. Mol Plant Pathol 15:226–241CrossRefPubMedGoogle Scholar
  13. Gildow F, Damsteegt V, Stone A, Schneider W, Luster D, Levy L (2004) Plum pox in North America: identification of aphid vectors and a potential role for fruit in virus spread. Phytopathology 94:868–874CrossRefPubMedGoogle Scholar
  14. Glasa M, Prikhodko Y, Predajňa L, Nagyová A, Shneyder Y, Zhivaeva T, Šubr Z, Cambra M, Candresse T (2013) Characterization of sour Cherry isolates of Plum pox virus from the Volga Basin in Russia reveals a new cherry strain of the virus. Virology 103:972–979Google Scholar
  15. Glasa M, Shneyder Y, Predajňa L, Zhivaeva T, Prikhodko Y (2014) Characterization of Russian Plum pox virus isolates provides further evidence of a low molecular heterogeneity within the PPV-C strain. J Plant Pathol 96:597–601Google Scholar
  16. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  17. IPPC-FAO (2012) International standards for phytosanitary measures: diagnostic protocols: Plum pox virus. ISPM 27, Annex 2 (DP2)Google Scholar
  18. James D, Varga A, Sanderson D (2013) Genetic diversity of Plum pox virus: strains, disease and related challenges for control. Can J Plant Pathol 35:431–441CrossRefGoogle Scholar
  19. James D, Sanderson D, Varga A, Sheveleva S, Chirkov S (2016) Genome sequence analysis of new isolates of the Winona strain of Plum pox virus and the first definitive evidence of intrastrain recombination events. Phytopathology 106:407–416CrossRefPubMedGoogle Scholar
  20. Jarausch W (2006) Plum pox virus (ppv) in Germany. EPPO Bull 36(2):209CrossRefGoogle Scholar
  21. Kamenova I, Lohuis D, Peters D (2002) Loss of aphid transmissibility of Plum pox virus isolates. Biotechnol Biotechnol Equip 16:48–54CrossRefGoogle Scholar
  22. Kassanis B, Sutic D (1965) Some results of recent investigations on sharka (plum pox) virus disease. Zast Bilja 16:335–340Google Scholar
  23. Krczal G, Avenarius U (1995) Detection and characterization of Plum pox virus (PPV) isolates from southern Germany by polymerase chain reaction (PCR). Acta Hort 386:370–375CrossRefGoogle Scholar
  24. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgin DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMedGoogle Scholar
  25. Maiss E, Timpe U, Brisske E, Jelkmann W, Casper R, Himmler G, Mattanovich D, Katinger HWD (1989) The complete nucleotide sequence of Plum pox virus RNA. J Gen Virol 70:513–524CrossRefPubMedGoogle Scholar
  26. Martin DP, Murrell B, Golden M, Khoosal A, Muhire B (2015) RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol 1:1–5CrossRefGoogle Scholar
  27. Nemchinov L, Hadidi A, Maiss E, Cambra M, Candresse T, Damsteegt V (1996) Sour Cherry strain of plum pox potyvirus (PPV): molecular and serological evidence for a new subgroup of PPV strains. Phytopathology 86:1215–1221CrossRefGoogle Scholar
  28. Nemchinov L, Crescenzi A, Hadidi A, Piazzolla P, Verderevskaya T (1998) Present status of the new cherry subgroup of plum pox virus (PPV-C). In: Hadidi A, Khetarpal RK, Koganezawa H (eds) Plant virus disease control. APS Press, St. Paul, pp 629–638Google Scholar
  29. Nemeth M (1986) Plum pox (sharka). In: Nemeth M (ed) Virus, mycoplasma and rickettsia diseases of fruit trees. Akademiai Kiado, Budapest, pp 463–479Google Scholar
  30. Olmos A, Cambra M, Dasi MA, Candresse T, Esteban O, Gorris MT, Asensio M (1997) Simultaneous detection and typing of plum pox potyvirus (PPV) isolates by Heminested-PCR and PCR-ELISA. J Virol Methods 68:127–137CrossRefPubMedGoogle Scholar
  31. Salvador B, Delgadillo MO, Sáenz P, García JA, Simón-Mateo C (2008) Identification of Plum pox virus pathogenicity determinants in herbaceous and woody hosts. MPMI 21:20–29CrossRefPubMedGoogle Scholar
  32. Sanderson D, Fu J, James D (2017) Identification of possible evolutionary pathways of Plum pox virus and predicting amino acid residues of importance to host adaptation. Acta Hort 1163:107–116CrossRefGoogle Scholar
  33. Shukla DD, Frenkel MJ, Ward CW (1991) Structure and function of the potyvirus genome with special reference to the coat protein coding region. Can J Plant Pathol 13:178–191CrossRefGoogle Scholar
  34. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  35. Urcuqui-Inchima S, Haenni AL, Bernardi F (2001) Potyvirus proteins: a wealth of functions. Virus Res 74:157–175CrossRefPubMedGoogle Scholar
  36. Wallis CM, Stone AL, Sherman DJ, Damsteegt VD, Gildow FE, Schneider WL (2007) Adaptation of Plum pox virus to a herbaceous host (Pisum sativum) following serial passages. J Gen Virol 88:2839–2845CrossRefPubMedGoogle Scholar
  37. Wetzel T, Candresse T, Ravelonandro M, Dunez J (1991) A polymerase chain reaction assay adapted to plum pox potyvirus detection. J Virol Methods 33:355–365CrossRefPubMedGoogle Scholar

Copyright information

© Deutsche Phytomedizinische Gesellschaft 2018

Authors and Affiliations

  • Wilhelm Jelkmann
    • 1
    Email author
  • Daniel Sanderson
    • 2
  • Constanze Berwarth
    • 1
  • Delano James
    • 2
  1. 1.Julius Kühn-Institute, Institute for Plant Protection in Fruit Crops and ViticultureDossenheimGermany
  2. 2.Sidney LaboratoryCanadian Food Inspection AgencyNorth SaanichCanada

Personalised recommendations