Journal of Plant Diseases and Protection

, Volume 125, Issue 4, pp 365–375 | Cite as

Susceptibility of the Box tree pyralid Cydalima perspectalis Walker (Lepidoptera: Crambidae) to potential biological control agents Neem (NeemAzal®-T/S) and entomopathogenic nematodes (Nemastar®) assessed in laboratory bioassays and field trials

  • Stefanie Göttig
  • Annette HerzEmail author
Original Article


The Box tree pyralid Cydalima perspectalis Walker (Lepidoptera: Crambidae) is one of the accidentally introduced organisms that became invasive and established in Europe within a few years. Thus, eco-friendly preparations are required, which should be accessible, affordable, easy usable and suitable for the application in private and public areas. Therefore, the effects of the plant extract formulation NeemAzal®-T/S (active ingredient Azadirachtin A) and the commercial preparation Nemastar® (entomopathogenic nematode species Steinernema carpocapsae) were investigated on C. perspectalis larvae in laboratory bioassays and field trials. When NeemAzal®-T/S-treated leaf discs were consumed by larvae in the laboratory, a significant effect on mortality and feeding activity was noted after 14 days of exposure. At this time, 47–62% of the larvae had already died and less than 10% of larvae were still feeding. Application of different S. carpocapsae suspensions (10–200 EPN/100 μl, i.e. per larva) demonstrated a high susceptibility of both tested larval instars (2nd: 10–75% and 4th: 45–100% mortality). In field trials neither the application of Nemastar® nor the use of NeemAzal®-T/S caused mortality rates comparable to those generated by the treatment with plant protection products based on Bacillus thuringiensis. In conclusion, there is a higher variability in terms of the effects of the investigated agents compared to the constant effectiveness of B. thuringiensis. But their use would be possible if individual feeding damage and proper surveillance will be considered in order to be capable of repeating the application timely and a combination with further measures ought to take place.


Buxus Biological control Feeding activity Larval mortality 



We would like to express our gratitude towards the Arthur and Aenne Feindt-Foundation (Hamburg), for the generous support of this work as a part of the project “Development of friendly methods for monitoring and regulating the Box tree pyralid, Cydalima perspectalis (Lepidoptera: Crambidae), an invasive pest in ornamentals”.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Arthurs S, Heinz KM, Prasifka JR (2004) An analysis of using entomopathogenic nematodes against above-ground pests. Bull Entomol Res 94(04):297–306CrossRefPubMedGoogle Scholar
  2. Bastidas B, Portillo E, San-Blas E (2014) Size does matter: the life cycle of Steinernema spp. in micro-insect hosts. J Invertebr Pathol 121:46–55CrossRefPubMedGoogle Scholar
  3. Benelli G, Canale A, Toniolo C, Higuchi A, Murugan K, Pavela R, Nicoletti M (2017) Neem (Azadirachta indica): towards the ideal insecticide? Nat Prod Res 31(4):369–386CrossRefPubMedGoogle Scholar
  4. Burges HD (1982) Control of insects by bacteria. Parasitology 84(4):79–117CrossRefGoogle Scholar
  5. Choo HY, Kaya HK, Lee SM, Kim TO, Kim JB (1991) Laboratory evaluation of enthomopathogenic nematodes Steinernema carpocapsae and Heterorhabditis bacteriophora against some forest insect pests. Korean J Appl Entomol 30(4):227–232Google Scholar
  6. Dammini Premachandra WTS, Borgemeister C, Poehling H-M (2005) Effects of Neem and Spinosad on Ceratothripoides claratris (Thysanoptera: Thripidae), an important vegetable pest in Thailand, under laboratory and greenhouse conditions. J Econ Entomol 98(2):438–448CrossRefPubMedGoogle Scholar
  7. Efil L, Ozgen I, Yardim EN (2005) Effects of a commercial Neem insecticide (NeemAzalTM-T/S) on early and late developmental stages of the Beet armyworm Spodoptera exiqua (Hübner) (Lepidoptera: Noctuidae). PJBS 8(4):520–526Google Scholar
  8. Erler F, Cetin H, Saribasak H, Serttas A (2010) Laboratory and field evaluations of some botanical pesticides against the cedar leaf moth, Acleris undulana. J Pest Sci 83(3):265–272CrossRefGoogle Scholar
  9. Glazer I (1992) Survival and efficacy of Steinernema carpocapsae in an exposed environment. Biocontrol Sci Technol 2(2):101–107CrossRefGoogle Scholar
  10. Glazer I, Lewis EE (2000) Bioassays of entomopathogenic nematodes. In: Navon A, Ascher KRS (eds) Bioassays of entomopathogenic microbes and nematodes. CAB International (CABI Publishing), Wallingford 2000, pp. 234Google Scholar
  11. Heckel DG, Gahan LJ, Baxter SW, Zhao JZ, Shelton AM, Gould F, Tabashnik BE (2007) The diversity of Bt resistance genes in species of Lepidoptera. J Invertebr Pathol 95(3):192–197CrossRefPubMedGoogle Scholar
  12. Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66CrossRefPubMedGoogle Scholar
  13. John R, Schumacher J (2013) Der Buchsbaum-Zünsler (Cydalima perspectalis) im Grenzach-Wyhlener Buchswald—Invasionschronik und Monitoringergebnisse [The Box-Tree Pyralid (Cydalima perspectalis) in the Box-Tree Forest of Grenzach-Whylen]. Gesunde Pflanzen 65(1):1–6CrossRefGoogle Scholar
  14. Kang J, Huang F, Onstad DW (2014) Modeling evolution of resistance of sugarcane borer (Lepidoptera: Crambidae) to transgenic Bt corn. Environ Entomol 43(4):1084–1104CrossRefPubMedGoogle Scholar
  15. Kaya HK, Gaugler R (1998) Entomopathogenic Nematodes. Annu Rev Entomol 38:181–206CrossRefGoogle Scholar
  16. Leuthardt FLG (2013) Distribution, life history, food choice and chemical ecology of the box-tree pyralid Cydalima perspectalis. Dissertation, University of BaselGoogle Scholar
  17. Nacambo S, Leuthardt FLG, Wan H, Li H, Haye T, Baur B et al (2014) Development characteristics of the box-tree moth Cydalima perspectalis and its potential distribution in Europe. J Appl Entomol 138(1–2):14–26CrossRefGoogle Scholar
  18. Oberdorfer E, Schwabe A, Müller T (2001) Pflanzensoziologische Exkursionsflora für Deutschland und angrenzende Gebiete. Eugen Ulmer, StuttgartGoogle Scholar
  19. Schmutterer H (1990) Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annu Rev Entomol 35:271–297CrossRefPubMedGoogle Scholar
  20. Schmutterer H, Huber J (2005) Natürliche Schädlingsbekämpfungsmittel. Eugen Ulmer GmbH & Co, GermanyGoogle Scholar
  21. Schnepf E, Crickmore N, van Rie J, Lereclus D, Baum J, Feitelson J et al (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62(3):775–806PubMedPubMedCentralGoogle Scholar
  22. Shannag HK, Capinera JL (1995) Evaluation of entomopathogenic nematode species for the control of Melonworm (Lepidoptera: Pyralidae). Environ Entomol 24(1):143–148CrossRefGoogle Scholar
  23. Smits PH (1996) Post-application persistence of entomopathogenic nematodes. Biocontrol Sci Technol 6(3):379–388CrossRefGoogle Scholar
  24. Unruh TR, Lacey LA (2001) Control of codling moth, Cydia pomonella (Lepidoptera: Tortricidae), with steinernema carpocapsae: effects of supplemental wetting and pupation site on infection rate. Biol Control 20(1):48–56CrossRefGoogle Scholar
  25. van Trier H, Hermans D (2007) Buchs. Eugen Ulmer, StuttgartGoogle Scholar
  26. Walker F (1859) Part XVIII pyralides—list of specimens of lepidopterous insects in the collection of the British Museum (Vol. 18, pp. 509-798). London: British Museum (Natural History), Department of ZoologyGoogle Scholar
  27. Wan H, Haye T, Kenis M, Nacambo S, Xu H, Zhang F, Li H (2014) Biology and natural enemies of Cydalima perspectalis in Asia: is there biological control potential in Europe? J Appl Entomol 138(10):715–722CrossRefGoogle Scholar
  28. Williamson M, Fitter A (1996a) The characters of successful invaders. Biol Conserv 78:163–170CrossRefGoogle Scholar
  29. Williamson M, Fitter A (1996b) The varying success of invaders. Ecology 77(6):1661–1666CrossRefGoogle Scholar

Copyright information

© Deutsche Phytomedizinische Gesellschaft 2018

Authors and Affiliations

  1. 1.Julius Kühn- Institut (JKI), Bundesforschungsinstitut für Kulturpflanzen, Institut für biologischen PflanzenschutzDarmstadtGermany

Personalised recommendations