Journal of Plant Diseases and Protection

, Volume 125, Issue 2, pp 133–144 | Cite as

Antifungal properties of essential oils against anthracnose disease: a critical appraisal

  • Amarjeet Kumar
  • V. B. Kudachikar


The present reviewed work on antifungal properties of EOs against following fungal pathogens of anthracnose disease is critically appraised over the period of last 16 years (2000–2016) that encompass both etiology and epidemiology of anthracnose in tropical fruits; current status of the main EOs and their specific volatile compounds such as terpenes, aromatic compounds, nitrogenous compounds were identified for their antifungal properties, when used at specific minimum inhibition concentration against species of the Colletotrichum genera of anthracnose disease; mechanisms of action of these major EOs for their antifungal activity were discussed. The major inferences drawn from this critical appraisal reviewed are the antifungal properties and the good fumigant nature of the above-mentioned essential oils and their specific volatile compounds from various plant species that inhibits postharvest fungal growth of Colletotrichum species such as Colletotrichum gloeosporioides Penz., Colletotrichum acutatum Colletotrichum fragaria, Colletotrichum musae of anthracnose disease in different tropical fruits in in vitro conditions. Till now, the researchers of the reported work reviewed did not pay attention toward further characterization of bioactive molecules with antifungal properties either from these listed EOs or their specific bioactive compounds. No cited work reported on in vitro screening and testing for their individual and synergistic effects even on in vivo testing their efficacies as the biochemical fungicide against said pathogenic fungal species of anthracnose. This reviewed knowledge on above topic could be used as future research tools to trace out the biochemical fungicides from various medicinal and aromatic plant sources as the alternative to synthetic chemical fungicides.


Anthracnose Colletotrichum species Essential oils Antifungal activity Fruit crops 



The authors are thankful to Director, CSIR-CFTRI, Mysuru for his keen interest, constant encouragement and CFTRI library staff for their help in collecting data and technical assistance to use search engines. This research review work undertaken as part of the CSIR-Network project-Agropathy (BSC0105) funded by Council of Scientific and Industrial Research (CSIR), New Delhi.

Compliance with ethical standards

Conflict of interest

I, Dr. V.B Kudachikar, the corresponding author of the manuscript, on the behalf of all the co-authors hereby undertake that there is no conflict of interest in the manuscript of the critical review paper for publication.


  1. Abd-Aiiam MA, Haggag WM (2013) Use of some plant essential oils as post-harvest botanical fungicides in the management of anthracnose disease of mango fruits (Mangifera indica L.) caused by Colletotrichum gloeosporioides (Penz). Int J Agric For 3:1–6. doi: 10.5923/j.ijaf.20130301.01 Google Scholar
  2. Ahmed S (1987) In: Grainge M, Ahmed S (eds) Handbook of plants with pest control properties-preface. Wiley, HobokenGoogle Scholar
  3. Ahmet C, Saban K, Hamdullah K, Ercan K (2005) Antifungal properties of essential oil and crude extracts of Hypericum linarioides Bosse. Biochem Syst Ecol 33:245–256. doi: 10.1016/j.bse.2004.08.006 CrossRefGoogle Scholar
  4. Amarjeet Kumar and Kudachikar (2017a) Figure 1: Colletotrichum species. (a. Colletotrichum gloeosporioides fungal growth plate, b. Colletotrichum gloeosporioides spore, and c. Colletotrichum coccodes fungal growth plate, d. Colletotrichum coccodes spore. Unpublished dataGoogle Scholar
  5. Amarjeet Kumar and Kudachikar (2017b) Figure 3: (a, b, c, d, and e.) Anthracnose disease in Mango, Tomato and Banana fruits. Unpublished dataGoogle Scholar
  6. Amiri A, Dugas R, Pichot AL, Bompeix G (2008) In vitro and In vivo activity of eugenol oil (Eugenia caryophylata) against four important postharvest apple pathogens. Int J Food Microbiol 126(1):13–19. doi: 10.1016/j.ijfoodmicro.2008.04.022 CrossRefPubMedGoogle Scholar
  7. Anaruma ND, Schmidt FL, Duarte MCT, Figueira GM, Delarmelina C, Benato EA, Sartoratto A (2010) Control of Colletotrichum gloeosporioides (Penz.) Sac. in yellow passion fruit using Cymbopogon citratus essential oil. Braz J Microbiol 41:66–73. doi: 10.1590/S1517-83822010000100012 CrossRefPubMedCentralPubMedGoogle Scholar
  8. Andrade WP, Vieira GHC (2016) Effect of essential oils on in vitro anthracnose and in fruits of the papaya plant. Rev Bras Plant Med 18(1):367–372. doi: 10.1590/1983-084X/15_089 CrossRefGoogle Scholar
  9. Aquino CF, Sales NLP, Soares EPS, Martins ER, Costa CA (2014) Chemical composition and in vitro activity of three essential oils on Colletotrichum gloeosporioides from passion fruit. Rev Bras Plant Med 16(2):329–336. doi: 10.1590/1983-084X/12_115 CrossRefGoogle Scholar
  10. Barrera-Necha LL, Bautista-Baños S, Flores Moctezuma HE, Estudillo AR (2008) Efficacy of essential oils on the conidial germination, the growth of Colletotrichum gloeosporioides (Penz.) and control of postharvest diseases in papaya (Carica papaya L.). Plant Pathol J 7(2):174–178. doi: 10.1016/j.postharvbio.2010.03.008 CrossRefGoogle Scholar
  11. Bazaka K, Jacob MV, Chrzanowski W, Ostrikov K (2015) Antibacterial surfaces: natural agents, mechanisms of action, and plasma surface modification. J Royal Soc Chem 5:48739–48759. doi: 10.1039/c4ra17244b Google Scholar
  12. Been J, Akhila R, Abraham E (2007) Antimicrobial activity and chemical composition of essential oil from Hedychium coronarium. Phytother Res 21(5):439–443. doi: 10.1002/ptr.2091 CrossRefGoogle Scholar
  13. Bellerbeck VG, De Roques CG, Bessiere JM, Fonvieille JL, Dargent R (2001) Effect of Cymbopogonnardus (L.) W.Watson essential oil on the growth and morphogenesis of Aspergillus niger. Can J Microbiol 47(1):9–17. doi: 10.1139/cjm-47-1-9 CrossRefGoogle Scholar
  14. Betts TJ (2001) Chemical characterization of the different types of volatile oil constituents by various solute retention ratios with the use of conventional and novel commercial gas chromatographic stationary phases. J Chromatogr A 936(1–2):33–46CrossRefPubMedGoogle Scholar
  15. Beye F (1978) Insecticides from the vegetable kingdom. Plant Res Dev 7:13–31Google Scholar
  16. Bhardwaj J, Seth MK, Jameel A, Dinesh C (2014) Antifungal efficacy of essential oils against common bean anthracnose caused by Colletotrichum lindemuthianum. IJSRR 3(4):22–29Google Scholar
  17. Bishop CD, Thornton IB (1997) Evaluation of the antifungal activity of the essential oils of Monardaci triodora var. citriodora and Melaleuca alternifolia on the postharvest pathogens. J Essential Oil Res 9:77–82. doi: 10.1080/10412905.1997.9700718 CrossRefGoogle Scholar
  18. Bosquez-Molinaa E, Ronquillo-de Jesús E, Bautista-Banos S, Verde-Calvoa JR, Morales-López J (2010) Inhibitory effect of essential oils against Colletotrichum gloeosporioides and Rhizopus stolonifer in stored papaya fruit and their possible application in coatings. Postharvest Biol Technol 57:132–137. doi: 10.1016/j.postharvbio.2010.03.008 CrossRefGoogle Scholar
  19. Bowles EJ (2003) Chemistry of aroma therapeutic oils. Allen and Unwin, Crows Nest. ISBN 174114-051XGoogle Scholar
  20. Burt Sara (2004) Essential oils: their antibacterial properties and potential application in foods. Int J Food Microbiol 94:223–253. doi: 10.1016/j.ijfoodmicro.2004.03.022 CrossRefPubMedGoogle Scholar
  21. Carson CF, Mee BJ, Riley TV (2002) Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage and salt tolerance assays and electron microscopy. Antimicrob Agents Chemother 46(6):1914–1920. doi: 10.1128/AAC.46.6.1914-1920.2002 CrossRefPubMedCentralPubMedGoogle Scholar
  22. Chen Y, Zeng H, Tian J, Ban X, Ma B, Wang Y (2013) Antifungal mechanism of essential oil from Anethum graveolens seeds against Candida albicans. J Medical Microbio 62:1175–1183. doi: 10.1099/jmm.0.055467-0 CrossRefGoogle Scholar
  23. Cid-Perez TS, Torres-Munoz JV, Nevarez-Moorillon GV, Palou E, Lopez-Malo A (2016) Chemical characterization and antifungal activity of Poliomintha longiflora Mexican oregano. J Essent Oil Res 28(2):157–165. doi: 10.1080/10412905.2015.1083490 CrossRefGoogle Scholar
  24. Combrinck S, Regnier T, Kamatou GPP (2011) In-vitro activity of eighteen essential oils and some major components against common postharvest fungal pathogens of fruit. Ind Crops Prod 33(2):344–349. doi: 10.1016/j.indcrop.2010.11.011 CrossRefGoogle Scholar
  25. Cristani M, d’Arrigo M, Mandalari G, Castelli F, Sarpietro MG, Micieli D, Venuti V, Bisignano G, Saija A, Trombetta D (2007) Interaction of four monoterpenes contained in essential oils with model membranes: implications for their antibacterial activity. J Agric Food Chem 55(15):6300–6308. doi: 10.1021/jf070094x CrossRefPubMedGoogle Scholar
  26. Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, RockvilleGoogle Scholar
  27. Daferera DJ, Ziogas BN, Polissiou MG (2000) GC–MS analysis of essential oils from some Greek aromatic plants and their fungitoxicity on Penicillium digitatum. J Agric Food Chem 48:2576–2581. doi: 10.1021/jf990835x CrossRefPubMedGoogle Scholar
  28. Dehghan G, Solaimanian R, Shahverdi AR, Amin G, Abdollahi M, Shafiee A (2007) Chemical composition and antimicrobial activity of essential oil of Ferula szowitsiana D.C. Flavour Fragr J 22(3):224–227. doi: 10.1002/ffj.1789 CrossRefGoogle Scholar
  29. Diodge EM (1932). Black spot of mangoes farming South Africa. Plant Pathol Bull 7:89–91. Dictionary of the fungi. 8th edn. International Mycological Institute, CABGoogle Scholar
  30. Dixit SN, Chandra H, Tiwari R, Dixit V (1995) Development of botanical fungicide against blue mold of mandarins. J Stored Prod Res 31:165e172. doi: 10.1016/0022-474X(94)00041-Q CrossRefGoogle Scholar
  31. Dorman HJD, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316. doi: 10.1046/j.1365-2672.2000.00969.x CrossRefPubMedGoogle Scholar
  32. Elshafie HS, Ghanney N, Mang SM, Ferchichi A, Camele I (2016) An in vitro attempt for controlling severe phytopathogens and human pathogens using essential oils from mediterranean plants of genus Schinus. J Med Food 19(3):266–273. doi: 10.1089/jmf.2015.0093 CrossRefPubMedGoogle Scholar
  33. Farag RS, Daw ZY, Abo-Raya SH (1989) Influence of some spice essential oils on Aspergillus parasiticus growth and production of aflatoxin in a synthetic medium. J Food Sci 54:74–76. doi: 10.1111/j.1365-2621.1989.tb08571.x CrossRefGoogle Scholar
  34. Feng W, Zheng X (2007) Essential oils to control Alternaria alternata in vitro and in vivo. Food Control 18:1126–1130. doi: 10.1016/j.foodcont.2006.05.017 CrossRefGoogle Scholar
  35. Gautam AK (2014) Colletotrichum gloeosporioides: biology, pathogenicity and management in India. J Plant Physiol Pathol 2(2):1–11. doi: 10.4172/2329-955X.1000125 CrossRefGoogle Scholar
  36. Hajhashemi V, Ghannadi A, Sharif B (2003) Anti-inflammatory and analgesic properties of the leaf extracts and essential oil of Lavandula angustifolia Mill. J Ethnopharmacol 89:67–71. doi: 10.1016/S0378-8741(03)00234-4 CrossRefPubMedGoogle Scholar
  37. Hidalgo PJ, Ubera JL, Santos JA, LaFont F, Castelanos C, Palomino A, Roman M (2002) Essential oils in Culamintha sylvatica Bromf. sp. ascendens (Jorden) PW Ball wild and cultivated productions and antifungal activity. J Essential Oil Res 14:68–71. doi: 10.1080/10412905.2002.9699768 CrossRefGoogle Scholar
  38. Hyde KD, Cai L, McKenzie EHC, Yang YL, Zhang JZ, Prihastuti H (2009) Colletotrichum: a catalog of confusion. Fungal Div 39:1–17Google Scholar
  39. Isman MB (2000) Plant essential oil for pest and disease management. Crop Prot 19:603–608. doi: 10.1016/S0261-2194(00)00079-X CrossRefGoogle Scholar
  40. Jing L, Lei Z, Li L, Xie R, Xi W, Guan Y, Sumner LW, Zhou Z (2014) Antifungal Activity of Citrus Essential Oils. J Agric Food Chem 62:3011–3033. doi: 10.1021/jf5006148 CrossRefPubMedGoogle Scholar
  41. Kabara JJ (1991) Phenols and chelators. In: Rusell NJ, Gould GW (eds) Food preservatives. Blackie, London, pp 200–214Google Scholar
  42. Karmen V, Bojana B, Margareta V, Franc P (2003) Effect of the antifungal activity of oxygenated aromatic essential oil compounds on the white-rot Trametes Versicolor and the brown-rot Coniophora puteana. Int Biodeter Biodegrad 51(1):51–59CrossRefGoogle Scholar
  43. Kauser AG (1959) Malformation of inflorescence in mango. Punjab Fruit J 22:19–21Google Scholar
  44. Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) The dictionary of the fungi, 10th edn. CABI Bioscience, UKGoogle Scholar
  45. Kordali S, Kotan R, Mavi A, Cakir A, Ala A, Yildirim A (2005) Determination of the chemical composition and antioxidant activity of the essential oil of Artemisia dracunculus and the antifungal and antibacterial activities of Turkish Artemisia absinthium, A. dracunculus, Artemisia santonicum, and Artemisia spicigera essential oils. J Agric Food Chem 53:9452–9458. doi: 10.1021/jf0516538 CrossRefPubMedGoogle Scholar
  46. Koul O, Walia S, Dhaliwal GS (2008) Essential oils as green pesticides: potential and constraints. Biopestic Int 4(1):63–84Google Scholar
  47. Kurita N, Koike S (1983) Synergistic antimicrobial effect of ethanol, sodium chloride, acetic acid and essential oil components. Agric Biol Chem 47:67–75. doi: 10.1080/00021369.1983.10865580 Google Scholar
  48. Kurita N, Miyaji M, Kurane R, Takahara Y (1981) Antifungal activity of components of essential oils. Agric Biol Chem 45:945–952. doi: 10.1080/00021369.1981.10864635 Google Scholar
  49. López-Malo A, Alzamora SM, Guerrero S (2000) Natural antimicrobials from plants. In: Alzamora SM, Tapia MS, López-Malo A (eds) Minimally processed fruits and vegetables-fundamental aspects and applications. Aspen Publishers Inc, Gaithersburg, pp 237–263Google Scholar
  50. Lucini EI, Zunino MP, Lopez ML, Zygadlo JA (2006) Effect of monoterpenes on lipid composition and sclerotial development of Sclerotium cepivorum Berk. J Phytopathol 154:441–446. doi: 10.1111/j.1439-0434.2006.01126.x CrossRefGoogle Scholar
  51. Mackenzie SJ, Seijo TE, Legard DE, Timmer LW, Peres NA (2007) Selection for pathogenicity to strawberry in populations of Colletotrichum gloeosporioides from native plants. Phytopathology 97:1130–1140. doi: 10.1094/PHYTO-97-9-1130 CrossRefPubMedGoogle Scholar
  52. Maqbool M, Ali A, Peter GA, Mahmud Tengku MM, Siddiqui Y, Zahida N (2011) Postharvest application of gum arabic and essential oils for controlling anthracnose and quality of banana and papaya during cold storage. Postharvest Biol Technol 62:71–76. doi: 10.1016/j.postharvbio.2011.04.002 CrossRefGoogle Scholar
  53. Martin MP, Garcia Figueres F (1999) Colletotrichum acutatum and C. gloeosporioides cause anthracnose on olives. Eur J Plant Pathol 105(8):733–741CrossRefGoogle Scholar
  54. Mihaliak CA, Gershenzo J, Croteau R (1991) Lack of rapid monoterpene turnover in rooted plants, implications for theories of plants chemicals defenses. Oceologia 87:373–376. doi: 10.1007/BF00634594 CrossRefGoogle Scholar
  55. Mozaina K, Mario RT, Charles LW, Franck ED, Kevin KS, David EW (2001) Phytotoxic and fungi toxic activities of the essential oil of kenaf (Hibiscus cannabinus L.) leaves and its composition. J Agric Food Chem 49:3768–3771. doi: 10.1021/jf0101455 CrossRefGoogle Scholar
  56. Munch S, Lingner U, Floss DS, Ludwig N, Sauer N, Deising HB (2008) The hemibiotrophic lifestyle of Colletotrichum species. J Plant Physiol 165:41–51. doi: 10.1016/j.jplph.2007.06.008 CrossRefPubMedGoogle Scholar
  57. Naigre R, Kalck P, Roques C, Roux I, Michel G (1996) Comparison of antimicrobial properties monoterpenes and their carbonylated products. Planta Med 62:275–277. doi: 10.1055/s-2006-957877 CrossRefPubMedGoogle Scholar
  58. Omidbeygi M, Barzegar M, Hamidi Z, Naghdibadi H (2007) Antifungal activity of thyme, summer savory and clove essential oils against Aspergillus flavus in liquid medium and tomato paste. Food Control 18:1518–1523. doi: 10.1016/j.foodcont.2006.12.003 CrossRefGoogle Scholar
  59. Oxenham SK (2003) Classification of an Ocimum basilicum germplasm collection and examination of the antifungal effects of the essential oil of basil. Ph.D. thesis, University of Glasgow, Glasgow, UKGoogle Scholar
  60. Ozek G, Demirci F, Ozek T, Tabanca N, Wedge DE, Khan SI, Baser KH, Duran A, Hamzaoglu E (2010) Gas chromatographic-mass spectrometric analysis of volatiles obtained by four different techniques from Salvia rosifolia Sm., and evaluation for biological activity. J Chromatogr A 1217(5):741–748. doi: 10.1016/j.chroma.2009.11.086 CrossRefPubMedGoogle Scholar
  61. Palhano FL, Vilches TTB, Santos RB, Orlando MTD, AV J, Fernandes PMB (2004) Inactivation of Colletotrichum gloeosporioides spores by high hydrostatic pressure combined with citral or lemongrass essential oil. Int J Food Microbiol 95:61–66. doi: 10.1016/j.ijfoodmicro.2004.02.002 CrossRefPubMedGoogle Scholar
  62. Perry NS, Bollen C, Perry EK, Ballard C (2003) Salvia for dementia therapy: review of pharmacological activity and pilot tolerability clinical trial. Pharmacol Biochem Behav 75(3):651–659. doi: 10.1016/S0091-3057(03)00108-4 CrossRefPubMedGoogle Scholar
  63. Pichersky E, Noel JP, Dudareva N (2006) Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science 311:808–811. doi: 10.1126/science.1118510 CrossRefPubMedCentralPubMedGoogle Scholar
  64. Pinto E, Pina-Vaz C, Salgueiro L, Gonçalves MJ, Costa-de-Oliveira S, Cavaleiro C, Palmeira A, Rodrigues A, Martinez-de-Oliveira J (2006) Antifungal activity of the essential oil of Thymus pulegioides on Candida, Aspergillus and dermatophyte species. J Med Microbiol 55:1367–1373. doi: 10.1099/jmm.0.46443-0 CrossRefPubMedGoogle Scholar
  65. Pitkethley R, Conde B (2007) Mango anthracnose. Pest/604.pdf
  66. Ploetz RC, Freeman S (2009) Foliar, floral and soil borne diseases. In: Litz RE (ed) The mango: botany, production, and uses, 2nd edn. CABI Publishing, UK, pp 231–302CrossRefGoogle Scholar
  67. Prakash B, Singh P, Kedia A, Dubey NK (2012) Assessment of some essential oils as food preservatives based on antifungal, anti-aflatoxin, antioxidant activities and in vivo efficacy in food system. Food Res Int 49:201–208. doi: 10.1016/j.foodres.2012.08.020 CrossRefGoogle Scholar
  68. Raccach M (1984) The antimicrobial activity of phenolics antioxidant in foods: a review. J Food Saf 6(3):141–170. doi: 10.1111/j.1745-4565.1984.tb00479.x CrossRefGoogle Scholar
  69. Regnier T, Plooy W, Combrinck S, Botha B (2008) Fungi toxicity of Lippia Scaberrima essential oil and selected terpenoid component on two mango postharvest spoilage pathogen. Postharvest Biol Technol 48:254–258. doi: 10.1016/j.postharvbio.2007.10.011 CrossRefGoogle Scholar
  70. Rojas EI, Rehner SA, Samuels GJ, Van Bael SA, Herre EA (2010) Colletotrichum gloeosporioides s.l. associated with Theobroma cacao and other plants in Panama: multilocus phylogenies distinguish pathogen and endophyte clades. Mycologia 102(6):1318–1338. doi: 10.3852/09-244 CrossRefPubMedGoogle Scholar
  71. Sellamuthu PS, Mafune M, Sivakumar D, Soundy P (2013a) Thyme oil vapor and modified atmosphere packaging reduce anthracnose incidence and maintain fruit quality in avocado. J Sci Food Agri. 93:3024–3031. doi: 10.1002/jsfa.6135 CrossRefGoogle Scholar
  72. Sellamuthu PS, Sivakumar D, Soundy P, Korsten L (2013b) Essential oil vapors suppress the development of anthracnose and enhance defense related and antioxidant enzyme activities in avocado fruit. Postharvest Biol Technol 81:66–72. doi: 10.1016/j.postharvbio.2013.02.007 CrossRefGoogle Scholar
  73. Sharma PN, Kaur M, Sharma OP, Sharma P, Pathania A (2005) Morphological, pathological and molecular variability in Colletotrichum capsici, the cause of fruit rot of chillies in the subtropical region of north-western India. J Phytopathol 153(4):232–237. doi: 10.1111/j.1439-0434.2005.00959.x CrossRefGoogle Scholar
  74. Sharma N, Tripathi A (2006) Effects of (Citrus sinensis L.) Osbeck epicarp essential oil on growth and morphogenesis of (Aspergillus niger L.) Van Tieghem. Microbiological Res. 163:337–344. doi: 10.1016/j.micres.2006.06.009 CrossRefGoogle Scholar
  75. Singh R, Tripathi P (2015) Cinnamomum zeylanicum essential oil in the management of anthracnose of banana fruits. JIPBS 2(3):290–299Google Scholar
  76. Smid EJ, Wittey D, De Vrees O, Gorris LMG (1994) Use of secondary plant metabolites for the control of post-harvest fungal diseases on flower bulbs. Acta Hortic. 368:523–530CrossRefGoogle Scholar
  77. Tabanca N, Demirci B, Baser KHC, Mincsovics E, Khan SI, Jacob MR, Wedge DE (2007) Characterization of volatile constituents of Scaligeria tripartita and studies on the antifungal activity against phytopathogenic fungi. J Chromatogr B 850(2007):221–229. doi: 10.1016/j.jchromb.2006.11.041 CrossRefGoogle Scholar
  78. Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates Inc, Sunderland, p 891Google Scholar
  79. Tepe B, Daferera D, Sokmen A, Sokmen M, Polissiou M (2005) Antimicrobial and antioxidant activities of the essential oil and various extracts of Salvia tomentosa Miller (Lamiaceae). Food Chem 90(4):333–340. doi: 10.1016/j.foodchem.2003.09.013 CrossRefGoogle Scholar
  80. Tripathi P, Dubey NK (2004) Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biol Technol 32:235–245. doi: 10.1016/j.postharvbio.2003.11.005 CrossRefGoogle Scholar
  81. Veluri R, Weir TL, Bais HP, Stermitz FR, Vivanco JM (2004) Phytotoxic and antimicrobial activities of catechin derivatives. J Agric Food Chem 52(5):1077–1082. doi: 10.1021/jf030653+ CrossRefPubMedGoogle Scholar
  82. Viuda-Martos M, Ruiz-Navajas Y, Fernández-López J, Pérez Álvarez JA (2007) Antifungal activities of thyme, clove and oregano essential oils. J Food Saf 27:91–101. doi: 10.1111/j.1745-4565.2007.00063.x CrossRefGoogle Scholar
  83. Viuda-Martos M, Ruiz-Navajas Y, Fernández-López J, Pérez-Álvarez J (2008) Antifungal activity of lemon (Citrus lemon L.), mandarin (Citrus reticulata L.), grapefruit (Citrus paradisi L.) and orange (Citrus sinensis L.) essential oils. Food Control 19:1130–1138. doi: 10.1016/j.foodcont.2007.12.003 CrossRefGoogle Scholar
  84. Wink M, Schimmer O (2010) Molecular modes of action of defensive secondary metabolites. In: Wink M (ed) Functions and biotechnology of plant secondary metabolites. Wiley-Blackwell, Chichester, pp 21–161CrossRefGoogle Scholar
  85. Yilmaz A, Ermis E, Boyraz N (2016) Investigation of in vitro and in vivo antifungal activities of different plant essential oils against postharvest apple rot diseases-Colletotrichum gloeosporioides, Botrytis cinerea and Penicillium expansum. J Food Safety and Food Quality 67(5):113–148. doi: 10.2376/0003-925X-67-122 Google Scholar

Copyright information

© Deutsche Phytomedizinische Gesellschaft 2017

Authors and Affiliations

  1. 1.Fruit and Vegetable Technology DepartmentCSIR-Central Food Technological Research InstituteMysoreIndia
  2. 2.Academy of Scientific and Innovative ResearchCSIR-Central Food Technological Research InstituteMysoreIndia

Personalised recommendations