Skip to main content

Advertisement

Log in

Benefits of hyperspectral imaging for plant disease detection and plant protection: a technical perspective

  • Review
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

The detection and identification of plant diseases is crucial for an appropriate and targeted application of plant protection measures in crop production. Recently, intensive research has been conducted to develop innovative and technology-based optical methods for plant disease detection. In contrast to common visual rating and detection methods, optical sensors are able to measure pathogen-induced changes in the plant physiology non-invasively and objectively. Several studies showed that especially hyperspectral sensors are valuable tools for disease detection, identification and quantification on different scales from the tissue to the canopy level. This review describes the basic principles of hyperspectral measurements and different types of available hyperspectral sensors. Possible applications of hyperspectral sensors on different scales for disease detection and plant protection are discussed and evaluated. The advantages and disadvantages on each particular scale, as well as the impact of external factors, such as: light, wind, viewing angle, for measurements in laboratories, greenhouses and fields, are critically assessed in order to support researchers and agriculture technicians. Additionally, a comprehensive literature review about the use of hyperspectral sensors on these different scales for plant disease detection reflects the possibilities of non-invasive measurement systems. This highlights advantages of hyperspectral sensors when investigating plant–pathogen interactions through multiple examples. By some approaches, detection before visible symptoms appear is feasible. The potential of hyperspectral sensors as a tool for disease identification and quantification, based on disease characteristic changes in the plants spectral signature, is discussed as well. The review is concluded with an overview on different data analysis methods, which are required to extract key information from gathered hyperspectral datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aasen H, Burkhart A, Bolten A, Bareth G (2015) Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: from camera calibration to quality assurance. ISPRS J Photogramm Remote Sens 108:245–259

    Article  Google Scholar 

  • Arens N, Backhaus A, Döll S, Fischer S, Seiffert U, Mock H-P (2016) Non-invasive presymptomatic detection of Cercospora beticola infection and identification of early metabolic responses in sugar beet. Front Plant Sci 7:1377

    Article  PubMed  PubMed Central  Google Scholar 

  • Asner GP, Nepstad D, Cardinot G, Ray D (2004) Drought stress and carbon uptake in an Amazon forest measured with spaceborne imaging spectroscopy. Proc Natl Acad Sci 101:6039–6044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baranowski P, Jedryczka M, Mazurek W, Babula-Skowronska D, Siedliska A, Kaczmarek J (2015) Hyperspectral and thermal imaging of oilseed rape (Brassica napus) response to fungal species of the genus Alternaria. PLoS ONE. doi:10.1371/journal.pone.0122913

    Google Scholar 

  • Bauriegel E, Giebel A, Herppisch WB (2011) Hyperspectral and chlorophyll fluorescence imaging to analyse the impact of Fusarium culmorum on the Photosynthetic integrity of infected wheat ears. Sensors 11:3765–3779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behmann J, Steinrücken J, Plümer L (2014) Detection of early plant stress responses in hyperspectral images. ISPRS J Photogramm Remote Sens 93:98–111

    Article  Google Scholar 

  • Behmann J, Mahlein A-K, Rumpf T, Römer C, Plümer L (2015a) A review of advanced machine learning methods for the detection of biotic stress in precision crop protection. Precis Agric 16:239–260

    Article  Google Scholar 

  • Behmann J, Mahlein A-K, Paulus S, Kuhlmann H, Oerke E-C, Plümer L (2015b) Calibration of hyperspectral close-range pushbroom cameras for plant phenotyping. ISPRS J Photogramm Remote Sens 106:172–182

    Article  Google Scholar 

  • Behmann J, Mahlein A-K, Paulus S, Kuhlmann H, Oerke E-C, Plümer L (2016) Generation and application of hyperspectral 3D plant models: methods and challenges. Mach Vis Appl 27:611–624

    Article  Google Scholar 

  • Ben-Dor E, Chabrillat S, Demattê JAM, Taylor GR, Hill J, Whiting ML, Sommer S (2009) Using imaging spectroscopy to study soil properties. Remote Sens Environ 113:38–55

    Article  Google Scholar 

  • Berdugo CA, Mahlein A-K, Steiner U, Dehne H-W, Oerke E-C (2013) Sensors and imaging techniques for the assessment of the delay of wheat senescence induced by fungicides. Funct Plant Biol 40:677–689

    Article  CAS  Google Scholar 

  • Berdugo CA, Zito R, Paulus S, Mahlein A-K (2014) Fusion of sensor data for the detection and differentiation of plant diseases in cucumber. Plant Pathol 63:1344–1356

    Article  CAS  Google Scholar 

  • Bergsträsser S, Fanourakis D, Schmittgen S, Cendrero-Mateo MP, Jansen M, Scharr H, Rascher U (2015) HyperART: non-invasive quantification of leaf traits using hyperspectral absorption-reflectance-transmittance imaging. Plant Methods 11:1–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Bishop CM (2006) Pattern recognition and machine learning. Springer, New York

    Google Scholar 

  • Blei DM (2012) Probabilistic topic models. Commun ACM 55:77–84

    Article  Google Scholar 

  • Bock CH, Poole GH, Parker PE, Gottwald TR (2010) Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Crit Rev Plant Sci 29:59–107

    Article  Google Scholar 

  • Bravo C, Moshou D, West J, McCartney A, Ramon H (2003) Early disease detection in wheat fields using spectral reflectance. Biosys Eng 84:137–145

    Article  Google Scholar 

  • Bravo C, Moshou D, Oberti R, West J, McCartney A, Bodria L, Ramon H (2004) Foliar disease detection in the field using optical sensor fusion. International Commission of Agricultural Engineering, Vol. VI Manuscript FP 04 008

  • Cao X, Luo Y, Zhou Y, Duan X, Cheng D (2013) Detection of powdery mildew in two winter wheat cultivars using canopy hyperspectral reflectance. Crop Prot 45:124–131

    Article  Google Scholar 

  • Carocho M, Ferreira ICFR (2013) A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 51:15–25

    Article  CAS  PubMed  Google Scholar 

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297

    Google Scholar 

  • Damm A, Guanter L, Verhoef W, Schläpfer D, Garbari S, Schaepman ME (2015) Impact of varying irradiance on vegetation indices and chlorophyll fluorescence derived from spectroscopy data. Remote Sens Environ 156:202–215

    Article  Google Scholar 

  • Deery D, Jimenez-Berni J, Jones H, Sirault X, Furbank R (2014) Proximal remote sensing buggies and potential applications for field-based phenotyping. Agronomy 4(3):349–379

    Article  Google Scholar 

  • Delalieux S, Somers B, Verstaeten WW, Keulemans W, Coppin P (2008) Hyperspectral canopy measurements under artificial illumination. Int J Remote Sens 29(20):6051–6058

    Article  Google Scholar 

  • Delalieux S, Somers B, Verstaeten WW, Vanaardt JAN, Keulemans W, Coppin P (2009) Hyperspectral indices to diagnose leaf biotic stress on apple plants, considering leaf phenology. Int J Remote Sens 30(8):1887–1912

    Article  Google Scholar 

  • Demattê JAM, Demattê JLI, Camargo WP, Fiorio PR, Nanni MR (2001) Remote sensing in the recognition and mapping of tropical soils developed on topographic sequences. Mapp Sci Remote Sens 38:79–102

    Google Scholar 

  • Devadas R, Lamb DW, Simpfendorfer S, Backhouse D (2009) Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves. Precis Agric 10:459–470

    Article  Google Scholar 

  • Elvidge CD, Keith DM, Tuttle BT, Baugh KE (2010) Spectral identification of lighting type and character. Sensors 10(4):3961–3988

    Article  PubMed  PubMed Central  Google Scholar 

  • Fiorani F, Schurr U (2013) Future scenarios for plant phenotyping. Annu Rev Plant Biol 64:267–291

    Article  CAS  PubMed  Google Scholar 

  • Furbank RT, Tester M (2011) Phenomics–technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:635–644

    Article  CAS  PubMed  Google Scholar 

  • Govender M, Dye PJ, Weiersbye IM, Witkowski ETF, Ahmed F (2009) Review of commonly used remote sensing and ground-based technologies to measure plant water stress. Water SA 35:741–752

    Article  Google Scholar 

  • Granier C, Vile D (2014) Phenotyping and beyond: modelling the relationships between traits. Curr Opin Plant Biol 18:96–102

    Article  PubMed  Google Scholar 

  • Grieve B, Hammersley S, Mahlein A-K, Oerke E-C, Goldbach H (2015) Localized multispectral crop imaging sensors: engineering and validation of cost effective plant stress and disease sensors. In: IEEE sensors applications symposium (SAS), Zadar, pp 1–6

  • Großkinsky DK, Svengaard J, Christensen S, Roitsch T (2015) Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap. J Exp Bot 66(18):5429–5440

    Article  PubMed  Google Scholar 

  • Hbirkou C, Pätzhold S, Mahlein A-K, Welp G (2012) Airborne hyperspectral imaging of spatial soil organic carbon heterogeneity at the field-scale. Geoderma 175–176:21–28

    Article  Google Scholar 

  • Hillnhütter C, Mahlein A-K, Sikora RA, Oerke E-C (2011) Remote sensing to detect plant stress induced by Heterodera schachtii and Rhizoctonia solane in sugar beet fields. Field Crops Res 122:70–77

    Article  Google Scholar 

  • Hillnhütter C, Mahlein A-K, Sikora RA, Oerke E-C (2012) Use of imaging spectroscopy to discriminate symptoms caused Heterodera schachtii and Rhizoctonia solane on sugar beet. Precis Agric 13:17–32

    Article  Google Scholar 

  • Huang J-F, Apan A (2006) Detection of Sclerotinia rot disease on celery using hyperspectral data and partial least squares regression. J Spat Sci 51:129–142

    Article  Google Scholar 

  • Huang W, Lamb DW, Niu Z, Zhang Y, Liu L, Wang J (2007) Identification of yellow rust in wheat using in situ spectral reflectance measurements and airborne hyperspectral imaging. Precis Agric 8:187–197

    Article  Google Scholar 

  • Jacquemoud S, Verhoef W, Baret F, Bacour C, Zarco-Tejada PJ, Asner GP, François C, Ustin SL (2009) PROSPECT + SAIL models: a review of use for vegetation characterization. Remote Sens Environ 113:56–66

    Article  Google Scholar 

  • Jensen JR (2006) Remote sensing of the environment: an earth resource perspective. 2nd end. Prentice-Hall, Upper Saddle River

  • Kersting K, Wahabzada M, Römer C, Thurau C, Ballvora A, Rascher U, Leon J, Bauckhage C, Plümer L (2012a) Simplex distributions for embedding data matrices over time. In: Proceedings of the 2012 SIAM international conference on data mining, pp 295–306

  • Kersting K, Xu Z, Wahabzada M, Bauckhage C, Thurau C, Römer C, Ballvora A, Rascher U, Leon J, Plümer L (2012b) Pre–symptomatic prediction of plant drought stress using dirichlet–aggregation regression on hyperspectral images. In: Proceedings of the tetny-sixth AAAI conference on artificial intelligence, pp 302–308

  • Kim DM, Zhang H, Zhou H, Du T, Wu Q, Mockler TC, Berezin MY (2015) Highly sensitive image-derived indices of water-stressed plants using hyperspectral imaging in SWIR and histogram analysis. Sci Rep 5:15919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruse FA, Lefkoff AB, Boardman JW, Heidebrecht KB, Shapiro AT, Barloon PJ, Goetz AFH (1993) The spectral image processing system (SIPS)-interactive visualization and analysis of imaging spectrometer data. Remote Sens Environ 44:145–163

    Article  Google Scholar 

  • Kuska M, Wahabzada M, Leucker M, Dehne H-W, Kersting K, Oerke E-C, Steiner U, Mahlein A-K (2015) Hyperspectral phenotyping on the microscopic scale: towards automated characterization of plant-pathogen interactions. Plant Methods 11:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuska MT, Brugger A, Thomas S, Wahabzada M, Kersting K, Oerke EC, Steiner U, Mahlein AK (2017) Spectral patterns reveal early resistance reactions of barley against Blumeria graminis f. sp. hordei. Phytopathology. doi:10.1094/PHYTO-04-17-0128-R

    PubMed  Google Scholar 

  • LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444

    Article  CAS  PubMed  Google Scholar 

  • Leucker M, Mahlein A-K, Steiner U, Oerke E-C (2016) Improvement of lesion phenotyping in Cercospora beticola-sugar beet interaction by hyperspectral imaging. Phytopathology 2:177–184

    Article  Google Scholar 

  • Leucker M, Wahabzada M, Kersting K, Peter M, Beyer W, Steiner U, Mahlein A-K, Oerke E-C (2017) Hyperspectral imaging reveals the effect of sugar beet quantitative trait loci on Cercospora leaf spot resistance. Funct Plant Biol 44:1–9

    Article  CAS  Google Scholar 

  • Li H, Lee WS, Wang K, Ehsani R, Yang C (2014) ‘Extended spectral angle mapping (ESAM)’ for citrus greening disease detection using airborne hyperspectral imaging. Precis Agric 15:162–183

    Article  Google Scholar 

  • Oerke EC, Mahlein AK, Steiner U (2014) Proximal sensing of plant diseases. In: Gullino ML, Bonants PJM (eds) Detection and diagnostics of plant pathogens. Springer, Dordrecht, pp 55–68. doi:10.1007/978-94-017-9020-8_4

    Google Scholar 

  • Mahlein A-K (2016) Plant disease detection by imaging sensors—parallels and specific demands for precision agriculture and plant phenotyping. Plant Dis 100:241–251

    Article  Google Scholar 

  • Mahlein A-K, Steiner U-, Dehne H-W, Oerke E-C (2010) Spectral signatures of sugar beet leaves for the detection and differentiation of diseases. Precis Agric 11:413–431

    Article  Google Scholar 

  • Mahlein A-K, Steiner U, Hillnhütter C, Dehne H-W, Oerke E-C (2012) Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet disease. Plant Methods 8(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahlein A-K, Rumpf T, Welke P, Dehne H-W, Plümer L, Steiner U, Oerke E-C (2013) Development of spectral indices for detecting and identifying plant diseases. Remote Sens Environ 128:21–30

    Article  Google Scholar 

  • Mahlein A-K, Hammersley S, Oerke E-C, Dehne H-W, Goldbach H, Grieve B (2015) Supplemental blue LED lighting array to improve the signal quality in hyperspectral imaging of plants. Sensors 15(6):12834–12840

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahoney M, Drineas P (2009) CUR matrix decompositions for improved data analysis. Proc Nat Acad Sci 106:697–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinelli F, Scalenghe R, Davino S, Panno S, Scuderi G, Ruisi P, Villa P, Stroppiana D, Boschetti M, Guolart LR, Davis CE, Dandekar AM (2014) Advanced methods for plant disease detection. A rev Agron Sustain Dev 35:1–25

    Article  Google Scholar 

  • Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens 42:1778–1790

    Article  Google Scholar 

  • Milton EJ, Shaepmann ME, Anderson K, Kneubühler M, Fox N (2009) Progress in field spectroscopy. Remote Sens Environ 113:92–109

    Article  Google Scholar 

  • Mirik M, Michels GJ, Kassymzhanova-Mirik S, Elliot NC, Bowling R (2006) Hyperspectral spectrometry as a means to differenciate uninfested and infested winter wheat by greenbug (Hemiptera: Aphididae). J Econ Entomol 99(5):1682–1690

    Article  PubMed  Google Scholar 

  • Montes JM, Technow F, Dhillon BS, Mauch F, Melchinger AE (2011) High-throughput non-destructive biomass determination during early plant development in maize under field conditions. Field Crops Res 121:268–273

    Article  Google Scholar 

  • Moshou D, Bravo C, Oberti R, West J, Bodria L, McCartney A, Ramon H (2005) Plant disease detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging using Kohonen maps. Real Time Imaging 11:75–83

    Article  Google Scholar 

  • Mutka AM, Bart RS (2014) Image-based phenotyping of plant disease symptoms. Front Plant Sci 5:734

    PubMed  Google Scholar 

  • Nevalainen O, Honkavaara E, Touminen S, Viljanen N, Hakala T, Yu X, Hyyppä J, Saari H, Pölönen I, Imai NN, Tommaselli AMG (2017) Individual tree detection and classification with UAV-based photogrammetric point clouds and hyperspectral imaging. Remote Sens 9:185

    Article  Google Scholar 

  • Pinto F, Damm A, Schickling A, Panigada C, Cogliati S, Müller-Linow M, Balcora A, Rascher U (2016) Sun-induced chlorophyll fluorescence from high-resolution imaging spectroscopy data to dandify spatio-temporal patterns of photosynthetic function in crop canopies. Plant Cell Environ 39:1500–1512

    Article  CAS  PubMed  Google Scholar 

  • Plaza A, Benediktsson JA, Boardman JW, Brazlie J, Bruzzone L, Camps-Valls G, Chanussot J, Fauvel M, Gamba P (2009) Recent advances in techniques for hyperspectral image processing. Remote Sens Environ 113:110–122

    Article  Google Scholar 

  • Polder G, van der Heijden GWAM, van Doorn J, Baltissen TAHMC (2014) Automatic detection of tulip breaking virus (TBV) in tulip fields using machine vision. Biosys Eng 117:35–42

    Article  Google Scholar 

  • Rodionov A, Welp G, Damerow L, Berg T, Amelung W, Pätzold S (2015) Towards on-the-go field assessment of soil organic carbon using Vis-NIR diffuse reflectance spectroscopy: developing and testing a novel tractor-driven measuring chamber. Soil Tillage Res 145:93–102

    Article  Google Scholar 

  • Römer C, Wahabzada M, Ballvora A, Pinto F, Rossini M, Panigada C, Behmann J, Léon J, Thurau C, Bauckhage C, Kersting K, Rascher U, Plümer L (2012) Early drought stress detection in cereals: simplex volume maximization for hyperspectral image analysis. Funct Plant Biol 39(11):878–890

    Article  Google Scholar 

  • Roscher R, Behmann J, Mahlein A-K, Dupuis J, Kuhlmann H, Plümer L (2016) Detection of disease symptoms on hyperspectral 3D plant models. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 3(7):89–96

    Article  Google Scholar 

  • Rouse JW, Haas RH, Schell JA, Deering DW (1974) Monitoring vegetation systems in the great plains with ERTS. In Freden SC, Mercanti EP, Becker M (ed), Third earth resources technology satellite-1 symposium. Volume I: technical presentations (pp 309–317), Washington DC: NASA SP-351

  • Rumpf T, Mahlein A-K, Steiner U, Oerke E-C, Dehne H-W, Plümer L (2010) Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Comput Electron Agric 74:91–99

    Article  Google Scholar 

  • Sankaran S, Khot LR, Espinoza CZ, Jarolmasjed S, Sathuvalli VR, Vandemark GJ, Miklas PN, Carter AH, Pumphrey MO, Knowles NR, Pavek KJ (2015) Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: a review. Eur J Agron 70:112–123

    Article  Google Scholar 

  • Simko I, Jiminez-Berni JA, Sirault XRR (2017) Phenomic approaches and tool for phytopathologists. Phytopathology 107:6–17

    Article  PubMed  Google Scholar 

  • Tackenberg M, Volkmar C, Dammer K-H (2016) Sensor-based variable-rate fungicide application in winter wheat. Pest Manag Sci 72(10):1888–1896

    Article  CAS  PubMed  Google Scholar 

  • Thomas S, Wahabzada M, Kuska M, Rascher U, Mahlein A-K (2017) Observation of plant–pathogen interaction by simultaneous hyperspectral imaging reflection and transmission measurements. Funct Plant Biol 44:23–34

    Article  CAS  Google Scholar 

  • Thurau C, Kersting K, Wahabzada M, Bauckhage C (2012) Descriptive matrix factorization for sustainability: adopting the principle of opposites. J Data Min Knowl Discov 24:325–354

    Article  Google Scholar 

  • Ustin SL, Gamon JA (2010) Remote sensing of plant functional types. New Phytol 186:795–816

    Article  PubMed  Google Scholar 

  • Vigneau N, Ecarnot M, Rabatel G, Roumet P (2011) Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in wheat. Field Crops Res 122:25–31

    Article  Google Scholar 

  • Virlet N, Sabermanesh K, Sadeghi-Tehran P, Hawkesford MJ (2017) Field scanalyzer: an automated robotic field phenotyping platform for detailed crop monitoring. Funct Plant Biol 44:143–153

    Article  Google Scholar 

  • Wahabzada M, Kersting K, Bauckhage C, Römer C, Ballvora A, Pinto F, Rascher U, Léon J, Plümer L (2012) Latent dirichlet allocation uncovers spectral characteristics of drought stressed plants. arXiv preprint arXiv, 1210.4919

  • Wahabzada M, Mahlein A-K, Bauckhage C, Steiner U, Oerke E-C, Kersting K (2015a) Metro maps of plant disease dynamics - automated mining of differences using hyperspectral images. PLoS ONE. doi:10.1371/journal.pone.0116902

    PubMed  PubMed Central  Google Scholar 

  • Wahabzada M, Paulus S, Kersting K, Mahlein A-K (2015b) Automated interpretation of 3D laserscanned point clouds for plant organ segmentation. BMC Bioinform 16:248

    Article  Google Scholar 

  • Wahabzada M, Mahlein A-K, Bauckhage C, Steiner U, Oerke E-C, Kersting K (2016) Plant phenotyping using probabilistic topic models: uncovering the hyperspectral language of plants. Sci Rep 6:22482. doi:10.1038/srep22482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter A, Liebisch F, Hund A (2015) Plant phenotyping: from bean weighting to image analysis. Plant Methods 11:14

    Article  PubMed  PubMed Central  Google Scholar 

  • West JS, Bravo C, Oberti R, Moshou D, Ramon H, McCartner HA (2010) Detection of fungal disease optically and pathogen inoculums by air sampling. In: Oerke E-C, Gerhards R, Menz G, Sikora RA (eds) Precision crop protection-the challenge and use of heterogeneity. Springer, Dordrecht, pp 135–149

    Chapter  Google Scholar 

  • Winterhalter L, Mistele B, Jampatong S, Schmidhalter U (2011) High throughput phenotyping of canopy water mass and canopy temperature in well-watered and drought stressed tropical maize hybrids in the vegetative stage. Eur J Agron 35:22–32

    Article  Google Scholar 

  • Yeh YH, Chung WC, Liao JY, Chung CL, Kuo YF, Lin TT (2016) Strawberry foliar anthracnose assessment by hyperspectral imaging. Comput Electron Agric 122:1–9

    Article  CAS  Google Scholar 

  • Yin X, Struik PC, Kropf MJ (2004) Role of crop physiology in predicting gene-to-phenotype relationships. Trends Plant Sci 9(9):426–432

    Article  CAS  PubMed  Google Scholar 

  • Zhao YR, Xiaoli L, Yu KQ, Cheng F, He Y (2016) Hyperspectral imaging for determining pigment contents in cucumber leaves in response of angular leaf spot disease. Sci Rep 6:27790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding was provided by the German Federal Ministry of Education and Research (BMBF) within the scope of the competitive grants program “Networks of excellence in agricultural and nutrition research—CROP.SENSe.net” (Funding code: 0315529), junior research group “Hyperspectral phenotyping of resistance reactions of barley” and by the Daimler and Benz foundation. The authors are furthermore thankful to Bayer CropScience for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Katrin Mahlein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, S., Kuska, M.T., Bohnenkamp, D. et al. Benefits of hyperspectral imaging for plant disease detection and plant protection: a technical perspective. J Plant Dis Prot 125, 5–20 (2018). https://doi.org/10.1007/s41348-017-0124-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-017-0124-6

Keywords

Navigation