Skip to main content
Log in

Morphological and histological aspects of Solanum tuberosum plants infested by Macrosiphum euphorbiae aphids

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Despite the important yield loss caused by Macrosiphum euphorbiae on potato crops, little is known about its direct effect on Solanum tuberosum plant. These phloemophagous insects use their piercing mouthparts (stylets) to follow intercellular pathway till reaching phloem sap. Consequently, host cells are punctured and aphid saliva is injected periodically to seal off the pores. Thus, host tissues are challenged by both mechanical wounding as well as salivary compounds delivered by aphids which might elicit or prevent the early defence responses. Our results display the main symptoms of compatible interaction between M. euphorbiae and its host plant S. tuberosum characterized at macroscopic and microscopic levels. Polyphenol deposits such as lignin and suberin associated with salivary sheath appear within 72 h after infestation resulting in cell wall thickening. Callose deposition was induced earlier in the apoplasm of epidermal and mesophyll cells beneath the feeding site and in the sieves tubes of distal leaves. Continuous aphid feeding led to a remarkable repression of callose in the mesophyll that appears to be co-localized with polyphenols surrounding the aphid stylet track. At high aphid density, localized cell death was observed on the foliar limb resulting in a drastic reduction of aphid’s growth at 4 days. Our results indicate that plant symptoms are tightly dependant on modality and time of aphid infestation which highlights the importance of taking all aspects into consideration when studying plant resistance to herbivores. The use of cytological approach is very promising tool for screening plants for aphid resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bajji M, M’hamdi M, Gastiny F, Delaplace P, Fauconnier ML, Du jardin P (2007) Catalase inhibition alters suberization and wound healing in potato (Solanum tuberosum) tubers. Physiol Plantarum 129:472–483

    Article  CAS  Google Scholar 

  • Barros-Rios J, Malvar RA, Jung HJG, Santiago R (2011) Cell wall composition as a maize defense mechanism against corn borers. Phytochemistry 72:365–371

    Article  CAS  PubMed  Google Scholar 

  • Blackman RL, Eastop VF (2000) Aphids on the world’s crops: an identification and information guide. Wiley, New York

    Google Scholar 

  • Brunissen L, Cherqui A, Pelletier Y, Vincent C, Giordanengo P (2009) Host-plant mediated interactions between two aphid species. Entomol Exp Appl 132:30–38

    Article  Google Scholar 

  • Brunt AA, Crabtree K, Dallwitz MJ, Gibbs AJ, Watson L, Zurcher EJ (1996) Viruses of plants: descriptions and lists from the VIDE database. 1484 pp. C.A.B. International, U.K

  • Dugravot S, Brunissen L, Létocart E, Tjallingii WF, Vincent C, Giordanengo P, Cherqui A (2007) Local and systemic responses induced by aphids in Solanum tuberosum plants. Entomol Exp Appl 123:271–277

    Article  Google Scholar 

  • Furch ACU, Van Bel AJE, Will T (2015) Aphid salivary proteases are capable of degrading sieve-tube proteins. J Exp Bot 66:533–539

    Article  CAS  PubMed  Google Scholar 

  • Grayer RJ, Kimmins FM, Padgham DE, Harborne JB, Rao DVR (1992) Condensed tannin levels and resistance of groundnuts (Arachis hypogaea) against Aphis craccivora. Phytochemistry 31:3795–3800

    Article  CAS  Google Scholar 

  • Hebert S, Jia L, Goggin F (2007) Quantitative differences in aphid virulence and foliar symptom development on tomato plants carrying the Mi resistance gene. Environ Entomol 36:458–467

    Article  PubMed  Google Scholar 

  • Hull R (2013) Plant virology. Academic Press, London, p 1118

    Google Scholar 

  • Jaouannet M, Rodriguez PA, Thorpe P, Lenoir CJG, MacLeod R, Escudero-Martinez C, Bos JIB (2014) Plant immunity in plant–aphid interactions. Front Plant Sci 5:663

    Article  PubMed  PubMed Central  Google Scholar 

  • Kempema LA, Cui X, Holzer FM, Walling LL (2007) Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiol 143:849–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerchev PI, Fenton B, Foyer CH, Hancock RD (2012) Infestation of potato (Solanum tuberosum L.) by the peach-potato aphid (Myzus persicae Sulzer) alters cellular redox status and is influenced by ascorbate. Plant Cell Environ 35:430–440

    Article  CAS  PubMed  Google Scholar 

  • Le Roux V, Campan EDM, Dubois F, Vincent C, Giordanengo P (2007) Screening for resistance against Myzus persicae and Macrosiphum euphorbiae among wild Solanum. Ann Appl Biol 151:83–88

    Article  Google Scholar 

  • Le Roux V, Dugravot S, Campan E, Dubois F, Vincent C, Giordanengo P (2008) Wild Solanum resistance to aphids: antixenosis or antibiosis? J Econ Entomol 101:584–591

    Article  PubMed  Google Scholar 

  • Li Q, Xie QG, Smith-Becker J, Navarre DA, Kaloshian I (2006) Mi-1-mediated aphid resistance involves salicylic acid and mitogen-activated protein kinase signaling cascades. Mol Plant Microbe Interact 19:655–664

    Article  CAS  PubMed  Google Scholar 

  • Maffei M, Bossi S, Spiteller D, Mithöfer A, Boland W (2004) Effects of feeding Spodoptera littoralis on lima bean leaves. I. Membrane potentials, intracellular calcium variations, oral secretions, and regurgitate components. Plant Physiol 134:1752–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maffei ME, Mithöfer A, Arimura GI, Uchtenhagen H, Bossi S, Bertea CM, Cucuzza LS, Novero M, Volpe V, Quadro S, Boland W (2006) Effects of feeding Spodoptera littoralis on lima bean leaves. III. Membrane depolarization and involvement of hydrogen peroxide. Plant Physiol 140:1022–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez de Ilarduya OM, Xie QG, Kaloshian I (2003) Aphid-induced defense responses in Mi-1-mediated compatible and incompatible tomato interactions. Mol Plant Microbe Interact 16:699–708

    Article  CAS  PubMed  Google Scholar 

  • Miles PW (1999) Aphid saliva. Biol Rev 74:41–85

    Article  Google Scholar 

  • Miles PW, Oertli JJ (1993) The significance of antioxidants in the aphid–plant interaction: the redox hypothesis. Entomol Exp Appl 67:275–283

    Article  CAS  Google Scholar 

  • Mithofer A, Boland W (2008) Recognition of herbivory-associated molecular patterns. Plant Physiol 146:825–831

    Article  PubMed  PubMed Central  Google Scholar 

  • Moloi MJ, Van der Westhuizen AJ (2006) The reactive oxygen species are involved in resistance responses of wheat to the Russian wheat aphid. Plant Physiol 163:1118–1125

    Article  CAS  Google Scholar 

  • Moreno A, Tjallingii WF, Fernandez-Mata G, Fereres A (2012) Differences in the mechanism of inoculation between a semi-persistent and a non-persistent aphid-transmitted plant virus. J Gen Virol 93:662–667

    Article  CAS  PubMed  Google Scholar 

  • Pelletier Y, Pompon J, Dexter P, Quiring D (2010) Biological performance of Myzus persicae and Macrosiphum euphorbiae (Homoptera: Aphididae) on seven wild Solanum species. Ann Appl Biol 156:329–336

    Article  Google Scholar 

  • Pompon J, Pelletier Y (2012) Changes in aphid probing behaviour as a function of insect age and plant resistance level. Bull Entomol Res 102:550–557

    Article  CAS  PubMed  Google Scholar 

  • Saheed S, Cierlik I, Larsson K, Delp G, Bradley G, Jonsson L, Botha C (2009) Stronger induction of callose deposition in barley by Russian wheat aphid than bird cherry-oat aphid is not associated with differences in callose synthase or β-1,3-glucanase transcript abundance. Physiol Plant 135:150–161

    Article  CAS  PubMed  Google Scholar 

  • Underwood W (2012) The plant cell wall: a dynamic barrier against pathogen invasion. Front Plant Sci 3:85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voigt CA (2014) Callose-mediated resistance to pathogenic intruders in plant defense-related papillae. Front Plant Sci 5:168

    Article  PubMed  PubMed Central  Google Scholar 

  • Walling L (2008) Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiol 146:859–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Will T, Kornemann S, Furch A, Tjallingii W, Van Bel A (2009) Aphid watery saliva counteracts sieve-tube occlusion: a universal phenomenon? J Exp Bot 212:3305–3312

    Article  CAS  Google Scholar 

  • Will T, Furch ACU, Zimmermann MR (2013) How phloem-feeding insects face the challenge of phloem-located defences. Front Plant Sci 4:336

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu J, Hettenhausen C, Meldau S, Baldwin IT (2007) Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. Plant Cell 19:1096–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Picardie Regional Council (France) for financing this work. I thank Dr Christine Rusterucci and Dr Anas Cherqui for their helpful suggestions, and I am also very grateful to Miss Afaf Saliba for improving the use of English in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hala Samaha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samaha, H. Morphological and histological aspects of Solanum tuberosum plants infested by Macrosiphum euphorbiae aphids. J Plant Dis Prot 124, 553–562 (2017). https://doi.org/10.1007/s41348-017-0115-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-017-0115-7

Keywords

Navigation