Skip to main content
Log in

Testing of antiviral characteristics of flammutoxin in transgenic tobacco

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Flammutoxin (FTX), a protein from fruiting bodies of edible mushroom Flammulina velutipes, is a hemolytic pore-forming protein and a transepithelial electrical resistance-decreasing protein. FTX also acts as an antiviral protein to inhibit Tobacco mosaic virus (TMV) infection of tobacco plants. To clarify its inhibition mechanism for TMV, the following experiments were performed. The gene FTX was introduced into the vector pBinFTX and then transformed into tobacco plants using Agrobacterium tumefaciens. The transgenic tobacco plant expressing FTX showed antiviral activities, and the development of TMV in tobacco was retarded after inoculated with TMV. Not only was the appearance of mosaic symptoms postponed, but also systemic symptoms were lessened in transgenic tobacco plants than in wild-type controls. The results indicate that FTX has antiviral activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abbreviations

CP:

Coat protein

FTX:

Flammutoxin

PAP:

Pokeweed antiviral protein

TDP:

Transepithelial electrical resistance-decreasing protein

Kan:

Kanamycin

References

  1. Aparana, S., Sonali, T., Sunil, K. K., Verma, H. N., & Vivek, P. (2009). Suppression of Papaya ringspot virus infection in Carica papaya with CAP-34, a systemic antiviral resistance inducing protein from Clerodendrum aculeatum. European Journal of Plant Pathology, 123(2), 241–246.

    Article  Google Scholar 

  2. Antimo, D. M., Rita, B., Alessia, R., Rachele, T., Valeria, S., Enza, Z., et al. (2012). Structural and enzymatic properties of an in vivo proteolytic form of PD-S2 type 1 ribosome-inactivating protein from seeds of Phytolacca dioica L. Biochemical and Biophysical Research Communications, 421(3), 514–520.

    Article  Google Scholar 

  3. Begam, M., Kumar, S., Roy, S., Campanella, J. J., & Kapoor, H. C. (2006). Molecular cloning and functional identification of a ribosome inactivating/antiviral protein from leaves of post-flowering stage of Celosia cristata and its expression in E. coli. Phytochemistry, 67(2), 2441–2449.

    Article  CAS  PubMed  Google Scholar 

  4. Church, G. M., & Gilbert, W. (1984). Genomic sequencing. Proceedings of the National Academy of Sciences of the United States of America, 81, 1991–1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Frank, V., Willy, J. P., Stijn, D., Paul, P., Marialibera, C., Els, J. M., et al. (2004). The type-1 and type-2 ribosome-inactivating proteins from Iris confer transgenic tobacco plants local but not systemic protection against viruses. Planta, 220(2), 211–221.

    Article  Google Scholar 

  6. Friess, H., Yamanaka, Y., Buchler, M., Berger, H. G., Kobrin, M. S., Baldwin, R. L., et al. (1993). Enhanced expression of the type II transforming growth factor beta receptor in human pancreatic cancer cells without alteration of type III receptor expression. Cancer Research, 53(12), 2704–2707.

    CAS  PubMed  Google Scholar 

  7. Friess, H., Yamanaka, Y., Buchler, M., Ebert, M., Beger, H. G., Gold, L. I., et al. (1993). Enhanced expression of transforming growth factor βisoforms in pancreatic cancer correlates with decreased survival. Gastroenterology, 105(6), 1846–1856.

    Article  CAS  PubMed  Google Scholar 

  8. Fu, M. J., Wu, Z. J., Lin, Q. Y., & Xie, L. H. (2005). Change of protein content in Flammulina velutipes and biological activities of a protein from it. Chinese Journal of Applied and Environmental Biology, 11(1), 40–44. (in Chinese with an English abstract).

    CAS  Google Scholar 

  9. Fu, M. J., Wu, Z. J., Xie, L. H., & Lin, Q. Y. (2003). The purification of antiviral protein in Flammulina velutipes and characteristic against tobacco mosaic virus. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 32(1), 84–88. (in Chinese with an English abstract).

    Google Scholar 

  10. Giandomenico, C., Mariarosaria, S., Daniela, A., Antimo, D. M., Letizia, P., Augusto, P., et al. (2008). Inducible antiviral antivity and rapid production of the Ribosome-Inactivating Protein I from Phytolacca heterotepala in tobacoo. Plant Science, 174(4), 467–474.

    Article  Google Scholar 

  11. Gooding, G. V., Jr., & Hebert, T. T. (1967). A simple technique for purification of tobacco mosaic virus in large quantities. Phytopathology, 57(11), 1285.

    PubMed  Google Scholar 

  12. Hudak, K. A., Hammell, A. B., Yasenchak, J., Tumer, N. E., & Dinman, J. D. (2001). A C-terminal deletion mutant of pokeweed antiviral protein inhibits programmed l viral infection ribosomes frame shifting and Tylretro transposition without depurinating the sarcin/ricin loop of RNA. Virology, 279(1), 292–301.

    Article  CAS  PubMed  Google Scholar 

  13. Katalin, A. H., Parikh, B. A., Rong, D., Marianne, B., Maria, S., Mirjana, S., et al. (2004). Generation of pokeweed antiviral protein mutation in Saccharomyces cerevisiae: evidence that ribosome depurination is not sufficient for cytotoxicity. Nucleic Acids Research, 32(14), 4244–4256.

    Article  Google Scholar 

  14. Li, Y., Hu, Y. Q., Chen, W. G., & Wang, J. (1989). The introduction of chimeric coat protein gene of tobacco mosaic virus and the regeneration of transgenic tobacco plant. Acta Botanica Yunnanica, 11(3), 1–3.

    Google Scholar 

  15. Lodge, J. K., Kaniewski, W. K., & Tumer, N. E. (1997). Broad-spectrum virus resistance in transgenic plants expressing pokeweed antiviral protein. Proceedings of the National Academy of Sciences of the United States of America, 90(15), 7089–7093.

    Article  Google Scholar 

  16. Lv, H. F., He, Y. K., Zhao, S. Z., Wang, S. Y., Ye, Y., Zhang, Z. K., et al. (1994). Antivirus genetic transformation of commercul tobacco cultivar G-28 and K326. Southwest China Journal of Agricultural Sciences, 7(1), 66–69.

    Google Scholar 

  17. Rong, D., & Tumer, N. E. (2015). Pokeweed antiviral protein: Its cytotoxicity mechanism and applications in plant disease resistance. Toxins, 7(3), 755–772.

    Article  Google Scholar 

  18. Sano, H., Seo, S., Orudgev, E., Youssefian, S., Ishizuka, K., & Ohashi, Y. (1994). Expression the gene for a small GTP-binding protein in transgenic tobacco elevates endogenous cytokinin levels, abnormally induces salicylic acid in response to wounding, and increases resistance to tobacco mosaic virus infection. Proceedings of the National Academy of Sciences of the United States of America, 91(22), 10556–10560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shelly, P., Savarni, T., & Anupam, V. (2001). Isolation and characterization of an inducer protein(Crip-31) from Clerodendrum inerme leaves responsible for induction of systemic resistance against viruses. Plant Science, 161(3), 453–459.

    Article  Google Scholar 

  20. Smirnov, S., Shulaev, V., & Tumer, N. E. (1997). Expression of pokeweed antiviral protein in transgenic plants induces virus resistance in grafted wild-type plants independently of salicylic acid accumulation and pathogenesis-related protein synthesis. Plant Physiology, 114(3), 1113–1121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun, H., Wu, Z. J., Xie, L. H., & Lin, Q. Y. (2001). Purification and characterization of AAVP, a protein inhibitor of TMV infection, from the edible fungus, Agrocybe aegerita. Acta Biochimica & Biophysica Sinica, 33(3), 351–354.

    CAS  Google Scholar 

  22. Tadjibaeva, G., Sabirov, R., & Tomita, T. (2000). Flammutoxin, a cytolysin from the edible mushroom Flammulina velutipes, forms two different types of voltage-gated channels in lipid bilayer membranes. Biochimica & Biophysica Acta-Biomembranes, 1467(2), 431–443.

    Article  CAS  Google Scholar 

  23. Tian, B., & Pei, M. Y. (1987). Plant virus research methods (pp. 201–203). Beijing: Science Press.

    Google Scholar 

  24. Tomita, T., Mizumachi, Y., Chong, K., Ogawa, K., Konishi, N., Sugawara-Tomita, N., et al. (2004). Protein sequence analysis, cloning, and expression of FTX, a pore-forming cytolysin from Flammulina velutipes. Maturation of dimeric precursor to monomeric active form by carboxyl-terminal truncation. Journal of Biological Chemistry, 279(52), 54161–54172.

    Article  CAS  PubMed  Google Scholar 

  25. Tomita, T., Ishikawa, D., Noguchi, T., Katayama, E., & Hashimoto, Y. (1998). Assembly of flammutoxin, a cytolytic protein from the edible mushroom Flammulina velutipes, into a pore-forming ring-shaped oligomer on the target cell. Biochemical Journal, 333(1), 129–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tumer, N. E., Wang, D. J., & Bonness, H. M. (1997). C-terminal deletion mutant of pokeweed antiviral protein inhibits viral infection but does not depurinate host ribosomes. Proceedings of the National Academy of Sciences of the United States of America, 94(8), 3866–3871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, G. L., & Fang, H. J. (2002). Plant genetic engineering (2nd ed.). Beijing: Science Press.

    Google Scholar 

  28. Watanabe, H., Narai, A., & Shimizu, M. (1999). Purification and cDNA cloning of a protein derived from Flammulina velutipes that increases the permeability of the intestinal Caco-2 cell monolayer. European Journal of Biochemistry, 262(3), 850–857.

    Article  CAS  PubMed  Google Scholar 

  29. Wu, L. P., Cao, Y. S., Wu, Z. J., Lin, Q. Y., & Xie, L. H. (2009). YP3: a novel plant virus inhibitory protein from mushroom Pleurotus cityinopileatus. Natural Product Research and Development, 21(3), 371–376.

    CAS  Google Scholar 

  30. Yoda, H., & Sano, H. (2003). Activation of hypersensitive response genes in the absence of pathogens in transgenic tobacco plants expressing a rice small GTPase. Planta, 217(6), 993–997.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the support provided by the National Natural Science Foundation of China (31360460, 30170558). We are also grateful to Prof. Li Hongqing in South China Normal University for donating the binary vector pBin19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Jia Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, LP., Gao, XL., Duan, YD. et al. Testing of antiviral characteristics of flammutoxin in transgenic tobacco. J Plant Dis Prot 124, 429–435 (2017). https://doi.org/10.1007/s41348-017-0089-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-017-0089-5

Keywords

Navigation