Skip to main content
Log in

Soil disinfestation with dimethyl disulfide for management of Fusarium wilt on lettuce in Italy

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

The efficacy of dimethyl disulfide (DMDS) applied in pre-planting treatment by shank injection was investigated on the lettuce Fusarium oxysporum f.sp. lactucae (FOL) pathosystem in Northern Italy (Piedmont), in three experimental trials. DMDS was tested alone or in combination with metham sodium at 35.9 g/m2, on lettuce cultivars showing different levels of susceptibility to the pathogen. DMDS, at 60 g/m2, reduced FOL symptoms on the highly susceptible butterhead type of 70, 97 and 99%, and of 87, 97 and 100% on the moderately susceptible cultivar, respectively. DMDS at 30 and 40 g/m2 showed a only partial efficacy on both lettuce types used in naturally infested soil, with a disease reduction from 30.3 to 64.5%, significantly comparable with dazomet. The results provided by DMDS at 40 g/m2 plus metham sodium at 35.9 g/m2 were statistically similar to those obtained with DMDS alone at 60 g/m2, and better than those provided by dazomet alone. A positive effect on lettuce yield and weed control by DMDS, at the highest dosage tested and by DMDS plus metham sodium, was also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abou Zeid, N. M., & Noher, A. M. (2014). Efficacy of DMDS as methyl bromide alternative in controlling soil borne diseases, root-knot nematode and weeds on pepper, cucumber and tomato in Egypt. Acta Horticulturae, 1044, 411–415.

    Article  Google Scholar 

  2. Ajwa, H. A., Trout, T., Mueller, J., Wilhelm, S., Nelson, S. D., Soppe, R., et al. (2002). Application of alternative fumigants through drip irrigation systems. Phytopathology, 92, 1349–1355.

    Article  CAS  PubMed  Google Scholar 

  3. Ajwa, H. A., Klose, S., Nelson, S. D., Minuto, A., Gullino, M. L., Lamberti, F., et al. (2003). Alternatives to methyl bromide in strawberry production in the United States of America and the Mediterranean region. Phytopathologia Mediterranea, 42, 220–244.

    CAS  Google Scholar 

  4. Anonymous (1989). Soil Disinfectant Basamid Granular BASF Gruppe. Agricultural Research Station, D-6703Limburger Hof, Federal Republic of Germany. htpp://www.basf.de. Accessed Oct 14 2016.

  5. Auger, J., & Arnault, I. (2005). Les disulfures, pesticides naturels: Le cas du DMDS, disulfure de dimethyle. AFPP-7ème Conférence Internationale sur les Ravageurs en Agriculture, Montpellier—26–27 October 2005.

  6. Auger, J., Ferary, S., & Huignard, J. (1994). A possible new class of natural sulfur pesticide for fumigation. Ecologie, 25(2), 39–101.

    Google Scholar 

  7. Barrière, V., Lecompte, F., Nicot, F. C., Maisonneuve, B., Tchamitchian, M., & Lescourret, F. (2014). Lettuce cropping with less pesticides. Agronomy for Sustainable Agriculture. A review, 34, 175–198.

    Article  Google Scholar 

  8. Bending, G. D., & Lincoln, S. D. (2002). Inhibition of soil nitrifying bacteria communities and their activities by glucosinolate hydrolysis products. Soil Biology and Biochemistry, 32, 1261–1269.

    Article  Google Scholar 

  9. Cabrera, J. A., Wang, D., Gerik, J. S., & Gan, J. (2014). Spot drip application of dimethyl disulfide as a post-plant treatment for the control of plant parasitic nematodes and soilborne pathogens in grape production. Pest Management Science, 70, 1151–1157.

    Article  CAS  PubMed  Google Scholar 

  10. Casati, D., & Baldi, L. (2016). L’importanza economica del comparto della IV gamma. In L. Sannino & B. Espinosa (Eds.), Le avversità degli ortaggi da foglia per la IV gamma (pp. 19–31). Eboli: TerraOrti.

    Google Scholar 

  11. Certis Europe (2013). Dimethyl disulfide: The new fumigant for a sustainable soil pest management (pp. 1–16). Brussels.

  12. Chellemi, D. O., Mirusso, J., Ajwa, H. A., Sullivan, D. A., & Unruh, B. J. (2013). Fumigant persistence and emission from soil under multiple field application scenarios. Crop Protection, 43, 94–103.

    Article  CAS  Google Scholar 

  13. Colla, P., Garibaldi, A., & Gullino, M. L. (2014). Consequences of European pesticide policies enforcement in soil disinfestation sector. Acta Horticulturae, 1044, 363–366.

    Article  Google Scholar 

  14. Colla, P., Gilardi, G., & Gullino, M. L. (2012). A review and critical analysis of the European situation of soilborne disease management in the vegetable sector. Phytoparasitica, 40, 515–523.

    Article  Google Scholar 

  15. Curto, G., Dongiovanni, C., Sasanelli, N., Santori, A., & Myrta, A. (2014). Efficacy of dimethyl disulfide (DMDS) in the control of the root-knot nematode Meloidogyne incognita and the cyst nematode Heterodera carotae on carrot in field condition in Italy. Acta Horticulturae, 1044, 405–410.

    Article  Google Scholar 

  16. Davis, R. M., Subbarao, K. V., Raid, R. N., & Kurtz, E. A. (Eds.). (1997). Compendium of lettuce diseases. St. Paul: APS Press.

    Google Scholar 

  17. Dugravot, S., Grolleau, F., Macherel, D., Rochetaing, A., Hue, B., Stankiewicz, M., et al. (2003). Dimethyl disulfide exerts insecticidal neurotoxicity through mitochondrial dysfunction and activation of insect KATP channels. Neurophysiol, 90, 259–270.

    Article  CAS  Google Scholar 

  18. EPA (2016). Product label: Paladin; Arkema, Inc.; King of Prussia, PA; 2016. EPA registration number 55050-4. www.epa.gov/soil-fumigants/soil-fumigant-labelsdimethyl- disulfide-dmds. Published June 19, 2014. Accessed June 6 2016.

  19. EPPO. (2004). EPPO Standards PP1 (2nd ed., Vol. 2). Paris: European and Mediterranean Plant Protection Organization.

    Google Scholar 

  20. EPPO (2009). Organisms previously included in the EPPO Alert List. https://www.eppo.int/QUARANTINE/Alert_List/deletions.htm. Accessed Oct 14 2016.

  21. Ferrocino, I., Gilardi, G., Pugliese, M., Gullino, M. L., & Garibaldi, A. (2014). Shifts in ascomycete community of biosolarizated substrate infested with Fusarium oxysporum f. sp. conglutinans and F. oxysporum f. sp. basilici by PCR-DGGE. Applied Soil Ecology, 81, 12–21.

    Article  Google Scholar 

  22. Fritsch, J. (2005). Dimethyl disulfide as a new chemical potential alternative to methyl bromide in soil disinfestation in France. Acta Horticulturae, 698, 71–76.

    Article  CAS  Google Scholar 

  23. Fritsch, J., Fouillet, T., Charles, P., Fargier-Puech, P., Ramponi- Bur, C., & Descamps, S. (2014). French experiences with dimethyl disulfide (DMDS) as a nematicide in vegetable crops. Acta Horticulturae, 1044, 427–434.

    Article  Google Scholar 

  24. Fennimore, S. A., & Haar, M. J. (2003). Weed control in strawberry provided by shank and drip applied methyl bromide alternative fumigants. HortScience, 38, 55–61.

    CAS  Google Scholar 

  25. Fennimore, S. A., Duniway, J. M., Browne, G. T., Martin, F. N., Ajwa, H. A., Westerdahl, B. B., Goodhue, R. E., Haar, M., & Winterbottorn, C. (2008). Methyl bromide alternatives evaluated for California strawberry nurseries. California Agriculture, 62, 62–67

    Article  Google Scholar 

  26. Fujinaga, M. (2005). Studies on physiological races and phylogenetic analysis of lettuce root rot pathogen, Fusarium oxysporum f. sp. lactucae. Journal of General Plant Pathology, 71, 457.

    Article  Google Scholar 

  27. García-Méndez, E., García-Sinovas, D., Becerril, M., De Cal, A., Melgarejo, P., Martínez-Treceño, A., et al. (2008). Chemical alternatives to methyl bromide for weed control and runner plant production in strawberry nurseries. HortScience, 43, 177–182.

    Google Scholar 

  28. Garibaldi, A., & Gullino, M. L. (2010). Emerging soilborne diseases of horticultural crops and new trends in their management. Acta Horticolturae, 883, 37–47.

    Article  Google Scholar 

  29. Garibaldi, A., Gilardi, G., & Gullino, M. L. (2002). First report of Fusarium oxysporum on lettuce in Europe. Plant Disease, 86, 1052.

    Article  Google Scholar 

  30. Garibaldi, A., Gilardi, G., & Gullino, M. L. (2004). Varietal resistance of lettuce to Fusarium oxysporum f. sp. lactucae. Crop Protection, 23, 845–851.

    Article  Google Scholar 

  31. Garibaldi, A., Gilardi, G., & Gullino, M. L. (2014). Critical aspects in disease management as a consequence of the evolution of soil-borne pathogens. Acta Horticolturae, 1044, 43–52.

    Article  Google Scholar 

  32. Gerik, J. S. (2005). Evaluation of soil fumigants applied by drip irrigation for Liatris production. Plant Disease, 89, 883–887.

    Article  Google Scholar 

  33. Gilardi, G., Demarchi, S., Gullino, M. L., & Garibaldi, A. (2014). Varietal resistance to control Fusarium wilts of leafy vegetables under greenhouse. Communications in Agricultural and Applied Biological Sciences, 79(2), 21–27.

    CAS  PubMed  Google Scholar 

  34. Gilardi, G., Gullino, M. L., Garibaldi, A., & Baudino, M. (2010). Effectiveness of fumigants alone and in combination with grafting to control Verticillium wilt and root-knot nematodes in eggplant and tomato brown root rot caused by Colletotrichum coccodes. Acta Horticolturae, 883, 21–25.

    Google Scholar 

  35. Gilreath, J. P., Santos, B. M., Busacca, J. D., Eger, J. E., Jr., Mirusso, J. M., & Gilreath, P. R. (2006). Validating broadcast application of Telone C-35 complemented with chloropicrin and herbicides in commercial tomato farms. Crop Protection, 25, 79–82.

    Article  CAS  Google Scholar 

  36. Gomez-Tenorio, M. A., Zanon, M. J., de Cara, M., Lupi, B., & Tello, J. C. (2015). Efficacy of dimethyl disulfide (DMDS) against Meloidogyne sp. and three formae speciales of Fusarium oxysporum under controlled conditions. Crop Protection, 78, 263–269.

    Article  CAS  Google Scholar 

  37. Gordon, T. R., & Koike, S. T. (2015). Management of Fusarium wilt of lettuce. Crop Protection, 73, 45–49.

    Article  Google Scholar 

  38. Gullino, M.L. (2001). Available alternatives for Italy. In: R. Labrada & L. Fornasari (Eds.), Global report on validated alternatives to the use of Methyl Bromide for soil fumigation (pp. 47–60). Rome FAO Plant Production and Protection Paper No. 166.

  39. Gullino, M. L., Gilardi, G., & Garibaldi, A. (2014). Seed-borne pathogens of leafy vegetable crops. In M. L. Gullino & G. Munkvold (Eds.), Global perspectives on the health of seeds and plant propagation material (pp. 47–53). Dordrecht: Springer.

    Google Scholar 

  40. Gullino, M. L., Minuto, A., Gilardi, G., Garibaldi, A., Ajwa, H., & Duafala, T. (2002). Efficacy of pre-plant soil fumigation with chloropicrin for tomato production in Italy. Crop Protection, 21, 741–749.

    Article  CAS  Google Scholar 

  41. Hochmuth, R. C., Davis, W. E., Stall, W. M., Simonne, E. H., Weiss, A. W., Nance, J., et al. (2003). Effect of 1,3-dichloropropene and chloropicrin on purple nutsedge (Cyperus rotundus L.) control under two mulches and two application methods. Proceedings of the Florida State Horticultural Society, 116, 164–167.

    Google Scholar 

  42. Hubbard, J. C., & Gerik, J. S. (1993). A new wilt disease of lettuce incited by Fusarium oxysporum f. sp. lactucum forma specialis nov. Plant Disease, 77, 750–754.

    Article  Google Scholar 

  43. ISTAT (2015) http://agri.istat.it. Accessed Oct 14 Oct 2016.

  44. Katan, J., Gullino, M. L., & Garibaldi, A. (2012). Strategies and tactics in Fusarium wilt management. In M. L. Gullino, J. Katan, & A. Garibaldi (Eds.), Fusairum wilts of greenhouse vegetable and ornamental crops (pp. 61–67). St. Paul: APS Press.

    Google Scholar 

  45. Komada H (1975) Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Review Plant Protection Research, 8, 114–125

    Google Scholar 

  46. Lembright, H. W. (1990). Soil fumigation: Principles and application technology. Journal of Nematology, 22, 632–644.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Leocata, S., Pirruccio, G., Medico, E., Myrta, A., & Greco, N. (2014). Dimethyl disulfide (DMDS): A new fumigant to control root-knot nematodes Meloidogyne spp. in protected crops in Sicily, Italy. Acta Horticulturae, 1044, 415–420.

    Article  Google Scholar 

  48. Li, Y., Mao, L., Yan, D., Ma, T., Shen, J., Guo, M., et al. (2014). Quantification of Fusarium oxysporum in fumigated soils by a newly developed real-time PCR assay to assess the efficacy of fumigants for Fusarium wilt disease in strawberry plants. Pest Management Science, 70, 1669–1675.

    Article  CAS  PubMed  Google Scholar 

  49. Locke, T., & Colhoun, J. (1974). Contribution to a method of testing oil palm seedlings for resistance to Fusarium oxysporum f. sp. elaeidis Toovey. Phytopathologische Zeitschrift, 79, 77–92.

    Article  Google Scholar 

  50. Malbrán, I., Mourelos, C. A., Mitidieri, M. S., Ronco, B. L., & Lori, G. A. (2014). Fusarium wilt of lettuce caused by Fusarium oxysporum f. sp. lactucae in Argentina. Plant Disease, 98, 1281.

    Article  Google Scholar 

  51. Mao, L., Yan, D., Wang, Q., Li, Y., Ouyang, C., Liu, P., et al. (2014). Evaluation of the combination of dimethyl disulfide and dazomet as an efficient methyl bromide alternative for cucumber production in China. Journal of Agricultural and Food Chemistry, 62, 4864–4869.

    Article  CAS  PubMed  Google Scholar 

  52. Matheron, M., & Gullino, M. L. (2012). Fusarium wilt of lettuce and other salad crops. In M. L. Gullino, J. Katan, & A. Garibaldi (Eds.), Fusarium wilt of greenhouse vegetable and ornamental crops (pp. 175–185). St. Paul: APS Press.

    Google Scholar 

  53. Matheron, M. E., McCreight, J. D., Tickes, B. R., & Porchas, M. (2005). Effect of planting date, cultivar, and stage of plant development on incidence of Fusarium wilt of lettuce in desert production fields. Plant Disease, 89, 565–570.

    Article  Google Scholar 

  54. Matuo, T., & Motohashi, S. (1967). On Fusarium oxysporum f. sp. lactucae n. f. causing root rot of lettuce. Transactions of the Mycological Society of Japan, 8, 13–15.

    Google Scholar 

  55. Mbofung, G. C. Y., & Pryor, B. M. (2010). A PCR-based assay for detection of Fusarium oxysporum f. sp. lactucae in lettuce seed. Plant Disease, 94, 860–866.

    Article  CAS  Google Scholar 

  56. Millani, M. J., Etebarian, H. R., & Alizadeh, A. (1999). Occurrence of Fusarium wilt of lettuce in Shahre-Ray, Varamin and Karaj areas. Iranian Journal of Plant Pathology, 35, 44–45.

    Google Scholar 

  57. Mulay, P. R., Cavicchia, P., Watkins, S. M., Tovar-Aguilar, A., Wiese, M., & Calvert, G. M. (2016). Acute Illness associated with exposure to a new soil fumigant containing dimethyl disulfide Hillsborough County, Florida. Journal of Agromedicine, 21, 373–379.

    Article  PubMed  Google Scholar 

  58. Papazlatani, C., Rousidou, C., Katsoula, A., Kolyvas, M., Genitsaris, S., Papadopoulou, K. K., et al. (2016). Assessment of the impact of the fumigant dimethyl disulfide on the dynamics of major fungal plant pathogens in greenhouse soils. European Journal of Plant Pathology, 146, 391–400.

    Article  CAS  Google Scholar 

  59. Pasquali, M., Demathei, F., Gullino, M. L., & Garibaldi, A. (2007). Identification of race 1 of Fusarium oxysporum f. sp. lactucae on lettuce by inter-retrotransposon sequence-characterized amplified region technique. Phytopathology, 97, 987–996.

    Article  CAS  PubMed  Google Scholar 

  60. Pecchia, S., Franceschini, A., Santori, A., Vannacci, G., & Myrta, A. (2017). Efficacy of dimethyl disulfide (DMDS) for the control of chrysanthemum Verticillium wilt in Italy. Crop Protection, 93, 28–32.

    Article  CAS  Google Scholar 

  61. Santos, B. M., Gilreath, J. P., Motis, T. N., Noling, J. W., Jones, J. P., & Norton, J. A. (2006). Comparing methyl bromide alternatives for soilborne disease, nematode and weed management in fresh market tomato. Crop Protection, 25, 690–695.

    Article  CAS  Google Scholar 

  62. Scott, J. C., Gordon, T. R., Shaw, D. V., & Koike, S. T. (2010). a). Effect of temperature on severity of Fusarium wilt of lettuce caused by Fusarium oxysporum f. sp. lactucae. Plant Disease, 94, 13–17.

    Article  Google Scholar 

  63. Scott, J. C., Kirkpatrick, S. C., & Gordon, T. R. (2010). Variation in susceptibility of lettuce cultivars to Fusarium wilt caused by Fusarium oxysporum f. sp. lactucae. Plant Pathology, 59, 139–146.

    Article  Google Scholar 

  64. Song, Z., Wang, Q., Guo, M., Zhao, Y., & Cao, A. (2008). Assessment on dimethyl disulfide as a soil fumigant. Agrochemicals, 47, 454–456.

    CAS  Google Scholar 

  65. Teasdale, J. R., & Taylorson, R. B. (1986). Weed seed response to methyl isothiocyanate and Metham. Weed Science, 34, 520–524.

    CAS  Google Scholar 

  66. US Environmental Protection Agency. (2010). Registration decision for dimethyl disulfide for pre-plant use to fumigate fields used to grow blueberries, cucurbit vegetables, fruiting vegetables, strawberries, field- grown ornamentals, and forest nursery crops. Washington, DC: Office of Pesticide Programs, Registration Division, US Environmental Protection Agency.

    Google Scholar 

  67. Van Wambeke, E., Ceustermans, A., De Landtsheer, A., & Coosemans, J. (2009). Combinations of soil fumigants for methyl-bromide replacement. Communications in Agricultural and Applied Biological Sciences, 74, 75–84.

    PubMed  Google Scholar 

  68. Ventura, J. A., & Costa, H. (2008). Fusarium wilt caused by Fusarium oxysporum on lettuce in Espirito Santo, Brazil. Plant Disease, 92, 976.

    Article  Google Scholar 

  69. Wang, D., Yates, S. R., & Gao, S. (2014). Chloropicrin emissions after shank injection: two-dimensional analytical and numerical model simulations of different source methods and field measurements. Journal of Environmental Quality, 40(5), 1443–1449.

    Article  Google Scholar 

  70. Wang, D., & Yates, S. R. (1999). Spatial and temporal distributions of 1,3-dichloropropene in soil under drip and shank application and implications for pest control efficacy using concentration-time index. Pesticide Science, 55, 154–160.

    Article  CAS  Google Scholar 

  71. Zheng, W., Yates, S. R., Guo, M., Papiernik, S. K., & Kim, J. H. (2004). Transformation of chloropicrin and 1,3-dichloropropene by metam sodium in a combined application of fumigants. Journal of Agricultural and Food Chemistry, 52, 3002–3009.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was carried out under the activities carried out by the Center for testing pesticides of Agroinnova.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Gilardi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilardi, G., Gullino, M.L. & Garibaldi, A. Soil disinfestation with dimethyl disulfide for management of Fusarium wilt on lettuce in Italy. J Plant Dis Prot 124, 361–370 (2017). https://doi.org/10.1007/s41348-017-0071-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-017-0071-2

Keywords

Navigation