Skip to main content
Log in

A Muscodor strain isolated from Citrus sinensis and its production of volatile organic compounds inhibiting Phyllosticta citricarpa growth

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

The citrus industry is among the most important worldwide, but citrus plants are affected by a large number of diseases, such as Citrus Black Spot (CBS), caused by the fungus Phyllosticta citricarpa. To identify alternative methods for CBS control, endophytic fungi were isolated by our group from healthy citrus plants in Brazil. Over 400 fungal isolates were obtained, and isolate LGMF1254 was selected based on its inhibitory effect on the growth of P. citricarpa because of the production of volatile organic compounds (VOCs). This isolate was identified as Muscodor sp. by morphological examination and phylogenetic analysis using the internal transcribed spacer (ITS) region: High similarity with M. sutura, M. vitigenus, and M. equiseti was observed. We also sequenced the RPB2 gene, and isolate LGMF1254 showed 99% similarity with M. sutura. To identify this isolate at the species level, the main VOCs were determined, and according to this analysis, LGMF1254 may be classified as an M. sutura strain; however, sequences from regions other than ITS and RPB2 are necessary for conclusive genotyping. The VOCs produced by strain LGMF1254 can be considered an alternative way to control P. citricarpa during the transport of fruits and to prevent the development of CBS signs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adams, R. P. (2007). Identification of essential oil components by gas chromatography/mass spectroscopy. Chicago, USA: Baylor University Allured Publishing Corporation.

  2. Agostini, J. P., Peres, N. A., Mackenzie, S. J., Adaskaveg, J. E., & Timmer, L. W. (2006). Effect of fungicides and storage conditions on postharvest development of citrus black spot and survival of Guignardia citricarpa in fruit tissues. Plant Disease, 90, 1419–1424.

    Article  Google Scholar 

  3. Baldassari, R. G., Reis, R. F., & Goes, A. (2009). A new method for inoculation of fruit with Guignardia citricarpa, the causal agent of citrus black spot. European Journal of Plant Pathology, 123, 1–4.

    Article  Google Scholar 

  4. Banerjee, D., Pandey, A., Jana, M., & Strobel, G. (2014). Muscodor albus MOW12 an endophyte of Piper nigrum L. (Piperaceae) collected from North East India produces volatile antimicrobials. Indian Journal of Microbiology, 54, 27–32.

    Article  CAS  PubMed  Google Scholar 

  5. Banerjee, D., Strobel, G., Geary, B., Sears, J., Ezra, D., Liarzi, O., et al. (2010). Muscodor albus strain GBA, and endophytic fungus of Ginkgo biloba from United States of America, produces volatile antimicrobials. Mycology, 1, 1–8.

    Article  Google Scholar 

  6. Chaudhary, A., Sood, S., Das, P., Kaur, P., Mahajan, I., Gulati, A., et al. (2014). Synthesis of novel antimicrobial aryl himachalene derivatives from naturally occurring himachalenes. EXCLI Journal, 13, 1216–1225.

    PubMed  PubMed Central  Google Scholar 

  7. Daisy, B. H., Strobel, G. A., Castillo, U., Ezra, D., Sears, J., Weaver, D. K., et al. (2002). Naphthalene, and insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology, 148, 3737–3741.

    Article  CAS  PubMed  Google Scholar 

  8. Daisy, B., Strobel, G., Ezra, D., & Hess, W. M. (2002). Muscodor vitigenus Anam. sp. Nov., an endophyte from Paullinia paullinioides. Mycotaxon, 84, 39–50.

    Google Scholar 

  9. Dos Santos, P. J. C., Savi, D. C., Gomes, R. R., Goulin, E. H., Senkiv, C. D. C., Tanaka, F. A. O., et al. (2016). Diaporthe endophytica and D. terebinthifolii from medicinal plants for biological control of Phyllosticta citricarpa. Microbiological Research, 186, 153–160.

    Article  PubMed  Google Scholar 

  10. Droby, S., Wisniewski, M., Macarisin, D., & Wilson, C. (2009). Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest Biological Technical, 52, 137–145.

    Article  Google Scholar 

  11. Ezra, D., Hess, W. M., & Strobel, G. (2004). New endophytic isolates of Muscodor albus, a volatile-antibiotic-producing fungus. Microbiology, 150, 4023–4031.

    Article  CAS  PubMed  Google Scholar 

  12. Ezra, D., Skovorodnikova, J., Kroitor-Keren, T., Denisoy, Y., & Liarzi, O. (2010). Development of methods for detection and Agrobacterium-mediated transformation of the sterile, endophytic fungus Muscodor albus. Biocontrol Science and Technology, 20, 83–97.

    Article  Google Scholar 

  13. Figueiredo, J. G., Goulin, E. H., Tanaka, F., Stringari, D., Kava-Cordeiro, V., Galli-Terasawa, L., et al. (2010). Agrobacterium tumefaciens-mediated transformation of Guignardia citricarpa. Journal of Microbiology and Methods, 80, 143–147.

    Article  CAS  Google Scholar 

  14. Gerrits Van Den Ende, A. H. G., & De Hoog, G. S. (1999). Variability and molecular diagnostics of neurotropic species Cladophialophora bantiana. Studies in Mycology, 43, 151–162.

    Google Scholar 

  15. Glienke, C., Pereira, O. L., Stringari, D., Fabris, J., Kava-Cordeiro, V., Galli-Terasawa, L., et al. (2011). Endophytic and pathogenic Phyllosticta species, with reference to those associated with citrus black spot. Persoonia, 26, 47–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gomes-Figueiredo, J., Pimentel, I. C., Vicente, V. A., Pie, M. R., Kava-Cordeiro, V., Galli-Terasawa, L., et al. (2007). Bioprospecting highly diverse endophytic Pestalotiopsis spp. with antibacterial properties from Maytenus ilicifolia, a medicinal plant from Brazil. Canadian Journal of Microbiology, 53, 1123–1132.

    Article  CAS  PubMed  Google Scholar 

  17. González, M. C., Anaya, A. L., Glenn, A. E., Marcias-Rubaicava, M. L., Hernandez-Bautista, B., & Hanlin, R. T. (2009). Muscodor yucatanensis, new endophytic ascomycete from mexican chakah, Bursera simaruba. Mycotaxon, 110, 363–372.

    Article  Google Scholar 

  18. Hall, T. A. (1997). Bioedit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT [online]. Bioedit4.8. Raileigh, 1997–2001. http://www.Mbio.Ncsu.edu/Bioedit.html [cited 30 July 2016].

  19. Hawksworth, D. L., Crous, P. W., Redhead, S. A., Reynolds, D. R., Samson, R. A., Seifert, K. A., et al. (2011). The Amsterdam declaration on fungal nomenclature. IMA Fungus, 2, 105–112.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hoekstra, E. S., & Aptoot, A. (1998). CBS course of mycology. Baarn/Delft, The Netherlands: Centrarlbureau Voor Schimmel cultures.

    Google Scholar 

  21. Hongsanan, S., Hyde, K. D., Bahkali, A. H., Camporesi, E., Chomnunti, P., Ekanayaka, H., et al. (2015). Fungal biodiversity profiles 11–20. Cryptogamie, Mycologie, 36, 355–380.

    Article  Google Scholar 

  22. Hsieh, H. M., Ju, Y. M., & Rogers, J. D. (2005). Molecular phylogeny of Hypoxylon and closely related genera. Mycologia, 97, 844–865.

    Article  CAS  PubMed  Google Scholar 

  23. Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754–755.

    Article  CAS  PubMed  Google Scholar 

  24. Huelsenbeck, J., Ronquist, F., Larget, B., Van Der Mark, P., & Teslenko, M. (2011). Mr Bayes: Bayesian inference of phylogeny [online]. http://mrbayes.sourceforge.net/ [cited 30 July 2016].

  25. Ikeda, A. C., Bassani, L. L., Adamoski, D., Stringari, D., Cordeiro, V. K., Glienke, C., et al. (2013). Morphological and genetic characterization of endophytic bacteria isolated from roots of different maize genotypes. Microbial Ecology, 65, 154–160.

    Article  PubMed  Google Scholar 

  26. Jeong, H. U., Kwon, S. S., Kong, T. Y., Kim, J. H., & Lee, H. S. (2014). Inhibitory effects of cedrol, β-cedrene, and thujopsene on cytochrome p45a0 enzyme activities in human liver microsomes. Journal of Toxicology and Environmental Health, 77, 1522–1532.

    Article  CAS  PubMed  Google Scholar 

  27. Korf, H. J. G., Schuttle, G. C., & Kotzé, J. M. (2001). Effect of packhouse procedures on the viability of Phyllosticta citricarpa, anamorph of the citrus black spot pathogen. African Plant Protection, 7, 103–109.

    Google Scholar 

  28. Kramer, R., & Abraham, W. R. (2012). Volatile sesquiterpenes from fungi: What are they good for? Phytochemical Reviews, 11, 15–37.

    Article  CAS  Google Scholar 

  29. Kudalkar, P., Strobel, G., Hassan, S. R., Geary, B., & Sears, J. (2012). Muscodor sutura, a novel endophytic fungus with volatile antibiotic activities. Mycoscience, 53, 319–325.

    Article  CAS  Google Scholar 

  30. Kurtzman, C. P., & Fell, J. W. (1998). The yeasts: A taxonomic study. Amsterdam: Elsevier.

    Google Scholar 

  31. Leandro, L. M., Vargas, F. S., Barbosa, P. C., Neves, J. K. O., Silva, J. A. S., & Veiga-Junior, V. F. (2012). Chemistry and biological activities of terpenoids from copaiba (Copaifera spp.) oleoresins. Molecules, 17, 3866–3889.

    Article  CAS  PubMed  Google Scholar 

  32. Liu, Y. J., Whelen, S., & Hall, B. D. (1999). Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerase II subunit. Molecular Biology and Evolution, 16, 1799–1808.

    Article  CAS  PubMed  Google Scholar 

  33. Martínez-Minaya, J., Conesa, D., López-Quílez, A., & Vicent, A. (2015). Climatic distribution of citrus black spot caused by Phyllosticta citricarpa, a historical analysis of disease spread in South Africa. European Journal of Plant Pathology, 143, 69–83.

    Article  Google Scholar 

  34. Mercier, J., & Smilanick, J. L. (2005). Control of green mold and sour rot of stored lemon by biofumigation with Muscodor albus. Biological Control, 32, 401–407.

    Article  Google Scholar 

  35. Meshram, V., Gupta, M., & Saxena, S. (2015). Muscodor ghoomensis and Muscodor indica: New endophytic species based on morphological features and molecular and volatile organic analysis from Northeast India. Sydowia, 67, 133–146.

    Google Scholar 

  36. Meshram, V., Kapoor, N., & Saxena, S. (2014). Muscodor kashayum sp. nov.—a new volatile antimicrobial producing endophytic fungus. Mycology, 4, 196–204.

    Article  PubMed Central  Google Scholar 

  37. Meshram, V., Saxena, S., & Kapoor, N. (2014). Muscodor strobelii, a new endophytic species from South India. Mycotaxon, 128, 93–104.

    Article  Google Scholar 

  38. Mitchell, A. M., Strobel, G., Moore, E., Robinson, R., & Sears, J. (2010). Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiology, 156, 270–277.

    Article  CAS  PubMed  Google Scholar 

  39. Nam, K. W., Kweon, H. M., & Song, N. H. (1993). Storage of Satsuma mandarin influenced by thiophanate-methyl treatment and mechanical injuries. Journal of Korean Society of Horticulture Science, 34, 279–284.

    CAS  Google Scholar 

  40. Oliveira Silva, A., Savi, D. C., Raiser, P. H. S., Gonçalves, F. P., Kava, V., Galli-Terasawa, L. V., & Glienke, C. (2016). Epidemiological aspects of Phyllosticta citricarpa colonization and viability in Citrus sinensis. Journal of Plant Diseases and Protection, 1–8. doi:10.1007/s41348-016-0046-8.

  41. Pileggi, S. A., Vieira de Oliveira, S. F., Andrade, C. W., Vicente, V. A., Dalzoto, P. R., Kniphoff da Cruz, G., et al. (2009). Molecular and morphological markers for rapid distinction between 2 Colletotrichum species. Canadian Journal of Microbiology, 55, 1076–1088.

    Article  CAS  PubMed  Google Scholar 

  42. Pontecorvo, G., Roper, J. A., Hemmons, L. M., Macdonald, K. D., & Bufton, A. W. (1953). The genetics of Aspergillus nidulans. Advances in Genetics, 5, 141–238.

    CAS  PubMed  Google Scholar 

  43. Posada, D., & Crandall, K. A. (1998). Modeltest: Testing the model of DNA substitution. Bioinformatics, 14, 817–818.

    Article  CAS  PubMed  Google Scholar 

  44. Possiede, Y. M., Gabardo, J., Kava-Cordeiro, V., Galli-Terasawa, L. V., Azevedo, J. L., & Glienke, C. (2009). Fungicide resistance and genetic variability in plant pathogenic strains of Guignardia citricarpa. Brazilian Journal of Microbiology, 40, 308–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Riker, A. J., & Riker, R. S. (1936). Introduction to research on plant diseases. New York and Indianapolis: John’s Swift Co.

    Google Scholar 

  46. Romanazzi, G., Lichter, A., Gabler, F. M., & Smilanick, J. L. (2012). Recent advances on the use of natural and safe alternatives to conventional methods to control postharvest gray mold of table grapes. Postharvest Biology and Technology, 63, 141–147.

    Article  CAS  Google Scholar 

  47. Ronquist, F., & Huelsenbeck, J. P. (2003). Mrbayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.

    Article  CAS  PubMed  Google Scholar 

  48. Savi, D. C., Aluizio, R., Galli-Terasawa, L., Kava, V., & Glienke, C. (2016). 16S-gyrB-rpoB multilocus sequence analysis for species identification in the genus Microbispora. Antonie van Leeuwenhoek, 109, 801–815.

    Article  CAS  PubMed  Google Scholar 

  49. Saxena, S., Meshram, V., & Kapoor, N. (2014). Muscodor darjeelingensis, a new endophytic fungus of Cinnamomum camphora collected from northeastern Himalayas. Sydowia, 66, 55–67.

    Google Scholar 

  50. Saxena, S., Meshram, V., & Kapoor, N. (2015). Muscodor tigerii sp, nov.—Volatile antibiotic producing endophytic fungus the northeastern Himalayas. Annals of Microbiology, 65, 47–57.

    Article  CAS  Google Scholar 

  51. Schreiber, A., & Bailey, A. (2012). Rapid quantitation and identification of carbendazim in orange juice using the new AB SCIEX QTRAP® 4500 LCMS/MS system fast method development in response to contaminated orange juice imports to the US Food Environmental, 1–4. https://sciex.com/Documents/tech%20notes/Carbendazim-in-orange-juice_AB%20SCIEX_4980212-02.pdf.

  52. Sharma, R. R., Singh, D., & Singh, R. (2009). Biological control of postharvest diseases of fruit and vegetables by microbial antagonists: A review. Biological Control, 50, 205–221.

    Article  Google Scholar 

  53. Siri-Udom, S., Suwannarach, N., & Lumyong, S. (2015). Existence of Muscodor vitigenus, M. equiseti and M. Heveae sp. nov. in leaves of the rubber tree (Hevea brasiliensis Müll. Arg.), and their biocontrol potential. Annals of Microbiology, 66, 1–12.

    Google Scholar 

  54. Strobel, G. (2006). Harnessing endophytes for industrial microbiology. Current Microbiology, 9, 240–244.

    Article  CAS  Google Scholar 

  55. Strobel, G. A. (2011). Muscodor species—endophytes with biological promise. Phytochemistry Reviews, 10, 165–172.

    Article  CAS  Google Scholar 

  56. Strobel, G. A., Dirkse, E., Sears, J., & Markworth, C. (2001). Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology, 147, 2943–2950.

    Article  CAS  PubMed  Google Scholar 

  57. Suwannarach, N., Bussaban, B., Hyde, K., & Lumyong, S. (2010). Muscodor cinnamomi, a new endophytic species from Cinnamomum bejolghota. Mycotaxon, 114, 15–23.

    Article  Google Scholar 

  58. Suwannarach, N., Bussaban, B., Nuangmek, W., Pithakpol, W., Jirawattanakul, B., Matsuif, K., et al. (2015). Evaluation of Muscodor suthepensis strain CMU-Cib-462 as a postharvest biofumigant for tangerine fruit rot caused by Penicillium digitatum. Journal of the Science of Food and Agriculture, 96, 339–345.

    Article  PubMed  Google Scholar 

  59. Suwannarach, N., Kumla, J., Bussaban, B., Hyde, K., Matsui, K., & Lumyong, S. (2013). Molecular and morphological evidence support four new species in the genus Muscodor from northern Thailand. Annals of Microbiology, 63, 1341–1351.

    Article  CAS  Google Scholar 

  60. Szilagyi-Zecchin, V. J., Ikeda, A. C., Hungria, M., Adamoski, D., Kava-Cordeiro, V., Glienke, C., et al. (2014). Identification and characterization of endophytic bacteria from corn (Zea mays L.) roots with biotechnological potential in agriculture. AMB Express, 4, 1–9.

    Article  CAS  Google Scholar 

  61. Timmer, L. W., Gernsey, S. M., & Graham, J. H. (2002). Plagas y enfermedades de los cítricos. USA: The American Phytopathological Society.

    Google Scholar 

  62. White, T. J., Bruns, T., Lee, J., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). San Diego, California, USA: Academic Press.

    Google Scholar 

  63. Worapong, J., Strobel, G., Daisy, B., Castillo, U. F., Baird, G., & Hess, W. M. (2002). Muscodor roseus anam. sp. nov., an endophyte from Grevillea pteridifolia. Mycotaxon, 81, 463–475.

    Google Scholar 

  64. Worapong, J., Strobel, G., & Hess, W. M. (2001). Muscodor albus anam. gen. et sp. nov., an endophyte from Cinnamomum zeylanicum. Mycotaxon, 79, 67–79.

    Google Scholar 

  65. Zhang, C. L., Wang, G. P., Mao, L. J., Komon-Zelazowska, M., Yuan, Z. L., Lin, F. C., et al. (2010). Muscodor fengyangensis sp. nov. from Southeast China: morphology, physiology and production of volatile compounds. Fungal Biology, 114, 797–808.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Gary Strobel for kindly providing the M. sutura strain and Gustavo Henrique Jungklaus for the assistance with editing images. L.C.P. is also grateful to CAPES for the scholarship. This research was supported by CNPq (486206/2012-2) and Fundação Araucária (39428-316/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Kava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pena, L.C., Jung, L.F., Savi, D.C. et al. A Muscodor strain isolated from Citrus sinensis and its production of volatile organic compounds inhibiting Phyllosticta citricarpa growth. J Plant Dis Prot 124, 349–360 (2017). https://doi.org/10.1007/s41348-016-0065-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-016-0065-5

Keywords

Navigation