Skip to main content
Log in

Efficacy of indigenous Trichoderma harzianum in controlling Phytophthora leaf fall (Phytophthora palmivora) in Thai rubber trees

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Phytophthora leaf fall disease in rubber trees is serious and is known to cause a reduction in both the quantity and quality of rubber latex in Thailand. This experiment was conducted to improve the effectiveness of controlling rubber leaf fall disease in indigenous Trichoderma harzianum. The results indicate that the T. harzianum strain FR-NST-009, isolated from the rhizosphere soil of rubber trees, is more effective at inhibiting the mycelial growth of P. palmivora (66.22%) than the Thai commercial strain T. harzianum CB-Pin-01 (63.51%) with a dual culture technique. This result is clear from the mycoparasitism of the T. harzianum strain FR-NST-009 under scanning electron microscope. Moreover, the ethyl acetate crude extracts of the T. harzianum strain FR-NST-009 with a 500 µg ml−1 concentration provided the most efficient mycelial inhibition of P. palmivora by 92.42%. Four bioactive compounds isolated from crude extract and compound 3 provided the highest inhibition of sporangium germination by 98.83%. Compound 3 was then identified as 6-n-pentyl-2H-pyran-2-one using nuclear magnetic resonance spectroscopy. Under field conditions, the T. harzianum strains of RB-NST-028 and FR-NST-009 were able to control leaf fall disease with no significant difference compared with metalaxyl fungicide after inoculation with P. palmivora for 120 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Venkatachalam, P., Geetha, N., Sangeetha, P., & Thulaseedharan, A. (2013). Natural rubber producing plants: An overview. African Journal of Biotechnology, 12(12), 1297–1310.

    Google Scholar 

  2. Sdoodee, R. (2004). Phytophthora diseases of rubber. In A. Drenth & D. I. Guest (Eds.), Diversity and management of Phytophthora in southeast Asia (pp. 136–142). Canberra: Australian Centre for International Agricultural Research.

    Google Scholar 

  3. Omorusi, V. I., Eguavoen, I. O., Bosah, B. O., Ogbebor, O. N., Orumwense, K., Ijie, K., et al. (2014). Severity of Phytophthora leaf infection on some rubber (Hevea brasiliensis) clones in Nigeria. Sci-Afric Journal of Scientific Issues, Research and Essays, 2(6), 289–291.

    Google Scholar 

  4. Sunpapao, A., & Pornsuriya, C. (2013). Chitosan inhibits the growth of Phytophthora botryosa: The causal agent of Para rubber leaf fall disease. Plant Pathology Journal, 12(2), 92–97.

    Article  Google Scholar 

  5. Rubber Research Institute of Thailand. (2010). Academic data of rubber tree. Department of Agriculture. Ministry of Agriculture and Cooperatives. http://www.rubberthai.com/about/data.php. Accessed May 20, 2011.

  6. Delabarre, M., & Serier, J. (2000). Rubber: The tropical agriculturalist (pp. 4–11). London: CTA Macmillan Education Ltd.

    Google Scholar 

  7. Sunpapao, A., & Pornsuriya, C. (2014). Effects of chitosan treatments on para rubber leaf fall disease caused by Phytophthora palmivora Butler-a laboratory study. Songklanakarin Journal of Science and Technology, 36(5), 507–512.

    Google Scholar 

  8. Drenth, A., & Sendall, B. (2004). Economic impact of phytophthora diseases in Southeast Asia. In A. Drenth & D. I. Guest (Eds.), Diversity and management of Phytophthora in Southeast Asia (pp. 10–28). Canberra: Australian Centre for International Agricultural Research.

    Google Scholar 

  9. Rubber Research Institute of Thailand. (2012). Diseases and abnormal symptoms of rubber tree. Department of Agriculture. Thailand: Ministry of Agriculture and Cooperatives.http://www.doa.go.th/th/index.php?option=com_docman&task=cat_view&gid=100&Itemid=81. Accessed May 12, 2014.

  10. Akhter, W., Bhuiyan, M. K. A., Sultana, F., & Hossain, M. M. (2015). Integrated effect of microbial antagonist, organic amendment and fungicide in controlling seedling mortality (Rhizoctonia solani) and improving yield in pea (Pisum sativum L.). Comptes Rendus Biologies, 338, 21–28.

    Article  PubMed  Google Scholar 

  11. Kim, B. S., & Hwang, B. K. (2007). Microbial fungicides in the control of plant diseases. Journal of Phytopathology, 155(11–12), 641–653.

    Article  CAS  Google Scholar 

  12. Office of Agricultural Economics of Thailand. (2014). Statistic of pesticide imported of Thailand in 2012. http://www.oae.go.th/ewt_news.php?nid=146. May 12, 2014.

  13. Huang, X., Chen, L., Ran, W., Shen, Q., & Yang, X. (2011). Trichoderma harzianum strain SQR-T37 and its bio-organic fertilizer could control Rhizoctonia solani damping-off disease in cucumber seedlings mainly by the mycoparasitism. Applied Microbiology and Biotechnology, 91, 741–755.

    Article  CAS  PubMed  Google Scholar 

  14. Kanjanamaneesathian, M., Phetcharat, V., Pengnoo, A., & Upawan, S. (2003). Use of Trichoderma harzianum cultured on ground mesocarp fibre of oil-palm as seed treatment to control Pythium aphanidermatum, a causal agent of damping-off of Chinese kale seedling. World Journal of Microbiology Biotechnology, 19(8), 825–829.

    Article  CAS  Google Scholar 

  15. Rojo, F. G., Reynoso, M. M., Ferez, M., Chulze, S. N., & Torres, A. M. (2007). Biological control by Trichoderma species of Fusarium solani causing peanut brown root rot under field conditions. Crop Protection, 26(4), 549–555.

    Article  Google Scholar 

  16. Dubey, S. C., Suresh, M., & Singh, B. (2007). Evaluation of Trichoderma species against Fusarium oxysporum f. sp. ciceris for integrated management of chickpea wilt. Biological Control, 40(1), 118–127.

    Article  Google Scholar 

  17. Galletti, S., Burzi, P. L., Cerato, C., Marinello, S., & Sala, E. (2008). Trichoderma as a potential biocontrol agent for Cercospora leaf spot of sugar beet. BioControl, 53(6), 917–930.

    Article  Google Scholar 

  18. Asad-Uz-Zaman, M., Bhuiyan, M. R., Khan, M. A. I., Alam Bhuiyan, M. K., & Latif, M. A. (2015). Integrated options for the management of black root rot of strawberry caused by Rhizoctonia solani Kuhn. Comptes Rendus Biologies, 338, 112–120.

    Article  PubMed  Google Scholar 

  19. Ruano Rosa, D., & López Herrera, C. J. (2009). Evaluation of Trichoderma spp. as biocontrol agents against avocado white root rot. Biological Control, 51(1), 66–71.

    Article  Google Scholar 

  20. Nallathambi, P., Umamaheswari, C., Thakore, B. B. L., & More, T. A. (2009). Post-harvest management of ber (Ziziphus mauritiana Lamk) fruit rot (Alternaria alternata Fr. Keissler) using Trichoderma species, fungicides and their combinations. Crop Protection, 28(6), 525–532.

    Article  CAS  Google Scholar 

  21. Abdel-Fattah, G. M., Shabana, Y. M., Ismail, A. E., & Rashad, Y. M. (2007). Trichoderma harzianum: A biocontrol agent against Bipolaris oryzae. Mycopathologia, 164(2), 81–89.

    Article  PubMed  Google Scholar 

  22. Zhang, F., Ge, H., Zhang, F., Guo, N., Wang, Y., Chen, L., et al. (2016). Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean. Plant Physiology and Biochemistry, 100, 64–74.

    Article  CAS  PubMed  Google Scholar 

  23. Kamala, T., & Indira, S. (2011). Evaluation of indigenous Trichoderma isolates from Manipur as biocontrol agent against Pythium aphanidermatum on common beans. 3. Biotech, 1, 217–225.

    Google Scholar 

  24. Benítez, T., Rincón, A., Limón, M., & Codón, A. (2004). Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7(4), 249–260.

    PubMed  Google Scholar 

  25. Harman, G. E. (2006). Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96, 190–194.

    Article  CAS  PubMed  Google Scholar 

  26. Intana, W. (2003). Selection and development of Trichoderma spp. for high glucanase, antifungal metabolite producing and plant growth promoting isolates for biological control of cucumber damping-off caused by Pythium spp. Ph.D. Thesis. Thailand: Faculty of Agriculture, Kasetsart University.

  27. Samuels, G. J. (2006). Trichoderma: systematics, the sexual state, and ecology. Phytopathology, 96(2), 195–206.

    Article  CAS  PubMed  Google Scholar 

  28. Agrios, G. (2005). Plant pathology (5th ed.). Burlington, MA: Elsevier Academic Press.

    Google Scholar 

  29. Sutton, B. C. (1980). The coelomycetes. England: Commonwealth Agricultural Bureau.

    Google Scholar 

  30. Mayachiew, P., & Devahastin, S. (2008). Antimicrobial and antioxidant activities of Indian gooseberry and galangal extracts. LWT-Food Science Technology, 41(7), 1153–1159.

    Article  CAS  Google Scholar 

  31. Prapagdee, B., Akrapikulchart, U., Mongkolsuk, S., Prapagdee, B., & Mongkolsuk, S. (2008). Potential of a soil-borne Streptomyces hygroscopicus for biocontrol of a anthracnose disease caused by Colletotrichum gloeosporioides in orchid. Journal of Biological Sciences, 8(7), 1187–1192.

    Article  Google Scholar 

  32. Evidente, A., Cabras, A., Maddau, L., Serra, S., Andolfi, A., & Motta, A. (2003). Viridepyronone, a new antifungal 6-substituted 2 h-pyran-2-one produced by Trichoderma viride. Journal of Agriculture and Food Chemistry, 51(24), 6957–6960.

    Article  CAS  Google Scholar 

  33. Koysomboon, S. (2006). Isolation and biological activities of the chemical constituents from Derris indica and Garcinia schomburgkiana and seasonal variation in the major metabolites of the brown alga Cystophora moniliformis. Ph.D. Thesis. Nakhon Si Thammarat: Walailak University.

  34. Özyilmaz, Ü., & Benlioglu, K. (2013). Enhanced biological control of Phytophthora blight of pepper by biosurfactant-producing Pseudomonas. The Plant Pathology Journal, 29, 418–426.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Seemadua, S. (1997). Application of antagonistic microorganisms for the control of root rot of tangerine caused by Phytophthora parasitica (Dastur.). Master’s Thesis. Kasetsart University.

  36. Jeerapong, C., Intana, W., Tuchinda, P., Phupong, W. (2014). 6-n-pentyl-2H-pyran-2-one from Trichoderma asperellum F009. In: Pure and Applied Chemistry International Conference 2014, (p 195). Bangkok, Thailand: Department of Chemistry, Faculty of Science, Khon Kaen University and Chemical Society of Thailand under the Patronage of Her Royal Highness Princess Chulabhorn Mahidol.

  37. Viterbo, A., Inbar, J., Hadar, Y., & Chet, I. (2007). Plant disease biocontrol and induced resistance via fungal mycoparasites. In C. P. Kubicek & I. S. Druzhinina (Eds.), Environmental and microbial relationships, the mycota IV (2nd ed., pp. 127–146). Berlin : Springer.

    Google Scholar 

  38. Jeleń, H., Błaszczyk, L., Chełkowski, J., Rogowicz, K., & Strakowska, J. (2014). Formation of 6-n-pentyl-2H-pyran-2-one (6-PAP) and other volatiles by different Trichoderma species. Mycological Progress, 13(3), 589–600.

    Article  Google Scholar 

  39. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species—opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1), 43–56.

    Article  CAS  PubMed  Google Scholar 

  40. Nawrocka, J., & Małolepsza, U. (2013). Diversity in plant systemic resistance induced by Trichoderma. Biological Control, 67, 149–156.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Office of the Higher Education Commission, Thailand Fund (Grant No. 10/2553) and Walailak University Fund (Grant No. WU58701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warin Intana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Promwee, A., Yenjit, P., Issarakraisila, M. et al. Efficacy of indigenous Trichoderma harzianum in controlling Phytophthora leaf fall (Phytophthora palmivora) in Thai rubber trees. J Plant Dis Prot 124, 41–50 (2017). https://doi.org/10.1007/s41348-016-0051-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-016-0051-y

Keywords

Navigation