Skip to main content
Log in

Effects of light-emitting diode treatments on Brevicoryne brassicae performance mediated by secondary metabolites in Brussels sprouts

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Although short-wavelength light and especially UV radiation can induce resistance in plants against herbivorous insects, the optimal wavelengths, light intensities (photon flux rates), and illumination schedules for inducing resistance have not been previously determined. Light-emitting diode (LED) illumination enables researchers to subject insects and plants to narrow-banded light treatments. In this study, we assessed how the metabolite-based defense response in Brussels sprout plants (Brassica oleracea var. gemmifera) against the cabbage aphid, Brevicoryne brassicae (Hemiptera: Aphididae), was affected by the following LED-generated wavelengths of light: 300 nm (UV-B), 365 nm (UV-A), 470 nm (blue light), and 660 nm (red light). Ambient greenhouse light supplemented with light from sodium vapor lamps served as the control treatment. The results showed a significant reduction in B. brassicae performance in the UV-A treatment compared to the blue light treatment; the reduction in the UV-A treatment was accompanied by a significant increase in glucosinolate concentrations. The UV-B treatment induced significant changes in plant flavonoid concentrations but did not affect B. brassicae performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abe K, Kido S, Maeda T, Kami D, Matsuura H, Shimura H, Suzuki T (2015) Glucosinolate profiles in Cardamine fauriei and effect of light quality on glucosinolate concentration. Sci Hortic 189:12–16

    Article  CAS  Google Scholar 

  2. Ballare CL (2014) Light regulation of plant defense. Annu Rev Plant Biol 65:335–363

    Article  CAS  PubMed  Google Scholar 

  3. Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62:471–481

    Article  CAS  PubMed  Google Scholar 

  4. Buchner R (1987) Approach to determination of HPLC response factors for glucosinolates. In: Wathelet JP (ed.) Glucosinolates in rapeseeds, analytical aspects, Springer, New York, pp 50–58

    Chapter  Google Scholar 

  5. Chaplin-Kramer R, Kliebenstein DJ, Chiem A, Morrill E, Mills NJ, Kremen C (2011) Chemically-mediated tritrophic interactions: opposing effects of glucosinolates on a specialist herbivore and its predators. J Appl Ecol 48:880–887

    Article  CAS  Google Scholar 

  6. Cole RA (1997) The relative importance of glucosinolates and amino acids to the development of two aphid pests Brevicoryne brassicae and Myzus persicae on wild and cultivated Brassica species. Entomol Exp Appl 85:121–133

    Article  CAS  Google Scholar 

  7. Demarsy E, Fankhauser C (2009) Higher plants use LOV to perceive blue light. Curr Opin Plant Biol 12(1):69–74

    Article  CAS  PubMed  Google Scholar 

  8. Dhakal R, Park E, Lee SW, Baek KH (2015) Soybean (Glycine max L. Merr.) sprouts germinated under red light irradiation induce disease resistance against bacterial rotting disease. PLoS ONE. doi:10.1371/journal.pone.0117712

    Google Scholar 

  9. DIN EN ISO 9167-1 (1992) Rapeseed—determination of glucosinolates content—part 1: method using high-performance liquid chromatography. ISO standards, Vernier. http://www.iso.org

  10. Fukuda N, Fujita M, Ohta Y, Sase S, Nishimura S, Ezura H (2008) Directional blue light irradiation triggers epidermal cell elongation of abaxial side resulting in inhibition of leaf epinasty in geranium under red light condition. Sci Hortic 115(2):176–182

    Article  Google Scholar 

  11. Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57(1):303–333

    Article  CAS  PubMed  Google Scholar 

  12. Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504

    Article  CAS  PubMed  Google Scholar 

  13. Heijde M, Ulm R (2013) Reversion of the Arabidopsis UV-B photoreceptor UVR8 to the homodimeric ground state. Proc Natl Acad Sci USA 110(3):1113–1118

    Article  CAS  PubMed  Google Scholar 

  14. Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 60(1):407–431

    Article  CAS  PubMed  Google Scholar 

  15. Kim JH, Lee BW, Schroeder FC, Jander G (2008) Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid). Plant J 54:1015–1026

    Article  CAS  PubMed  Google Scholar 

  16. Krumbein A, Schonhof I, Schreiner M (2005) Composition and contents of phytochemicals (glucosinolates, carotenoids and chlorophylls) and ascorbic acid in selected Brassica species (B. juncea, B. rapa subsp. nipposinica var. chinoleifera, B. rapa subsp. chinensis and B. rapa subsp. rapa). J Appl Bot Food Qual 79:168–174

    CAS  Google Scholar 

  17. Kuhlmann F, Müller C (2009) Development-dependent effects of UV radiation exposure on broccoli plants and interactions with herbivorous insects. Environ Exp Bot 66(1):61–68

    Article  CAS  Google Scholar 

  18. Kuhlmann F, Müller C (2009) Independent responses to ultraviolet radiation and herbivore attack in broccoli. J Exp Bot 60(12):3467–3475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kuhlmann F, Müller C (2010) UV-B impact on aphid performance mediated by plant quality and plant changes induced by aphids. Plant Biol 12(4):676–684

    CAS  PubMed  Google Scholar 

  20. Kuhlmann F, Müller C (2011) Impacts of ultraviolet radiation on interactions between plants and herbivorous insects: a chemo-ecological perspective. Prog Bot 72:305–347

    Article  CAS  Google Scholar 

  21. Landosky JM, Karowe DN (2014) Will chemical defenses become more effective against specialist herbivores under elevated CO2? Glob Change Biol 20(10):3159–3176

    Article  Google Scholar 

  22. Mazza CA, Ballare CL (2015) Photoreceptors UVR8 and phytochrome B cooperate to optimize plant growth and defense in patchy canopies. New Phytol 207:4–9

    Article  PubMed  Google Scholar 

  23. Mewis I, Schreiner M, Nguyen CN, Krumbein A, Ulrichs C, Lohse M, Zrenner R (2012) UV-B irradiation changes specifically the secondary metabolite profile in broccoli sprouts: induced signaling overlaps with defense response to biotic stressors. Plant Cell Physiol 53(9):1546–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miles CI, del Campo ML, Renwick JAA (2005) Behavioral and chemosensory responses to a host recognition cue by larvae of Pieris rapae. J Comp Physiol A 191:147–155

    Article  Google Scholar 

  25. Neugart S, Zietz M, Schreiner M, Rohn S, Kroh LW, Krumbein A (2012) Structurally different flavonol glycosides and hydroxycinnamic acid derivatives respond differently to moderate UV-B radiation exposure. Physiol Plant 145:582–593

    Article  CAS  PubMed  Google Scholar 

  26. Neugart S, Fiol M, Schreiner M, Rohn S, Zrenner R, Kroh LW, Krumbein A (2014) Interaction of moderate UV-B exposure and temperature on the formation of structurally different flavonol glycosides and hydroxycinnamic acid derivates in kale (Brassica oleracea var. sabellica). J Agric Food Chem 62:4054–4062

    Article  CAS  PubMed  Google Scholar 

  27. Ormrod DP, Landry LG, Conklin PL (1995) Short term UV-B radiation and ozone exposure effects on aromatic secondary metabolite accumulation of flavonoid-deficient Arabidopsis mutants. Physiol Plant 93:602–610

    Article  CAS  Google Scholar 

  28. R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0, http://www.R-project.org

  29. Rechner O, Poehling HM (2014) UV exposure induces resistance against herbivorous insects in broccoli. J Plant Dis Prot 121(3):125–132

    Article  Google Scholar 

  30. Reifenrath K, Müller C (2007) Species-specific and leaf-age dependent effects of ultraviolet radiation on two Brassicaceae. Phytochemistry 68:875–885

    Article  CAS  PubMed  Google Scholar 

  31. Rizzini L, Favory JJ, Cloix C, Faggionato D, O’Hara A, Kaiserli E (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103–106

    Article  CAS  PubMed  Google Scholar 

  32. Rohr F, Ulrichs C, Schreiner M, Nguyen CN, Mewis I (2011) Impact of hydroxylated and non-hydroxylated aliphatic glucosinolates in Arabidopsis thaliana crosses on plant resistance against a generalist and a specialist herbivore. J Chem Ecol 21:171–180

    CAS  Google Scholar 

  33. Schmidt S, Zietz M, Schreiner M, Rohn S, Kroh LW, Krumbein A (2010) Identification of complex, naturally occurring flavonoid glycosides in kale (Brassica oleracea var. sabellica) by high-performance liquid chromatography diode-array detection/electrospray ionization multi-stage mass spectrometry. Rapid Commun Mass Spectrom 24:2009–2022

    Article  CAS  PubMed  Google Scholar 

  34. Schreiner M, Mewis I, Huyskens-Keil S, Jansen MAK, Zrenner R, Winkler JB, O’Brien N, Krumbein A (2012) UV-B-induced secondary plant metabolites—potential benefits for plant and human health. Crit Rev Plant Sci 31:229–240

    Article  CAS  Google Scholar 

  35. Textor S, Gershenzon J (2009) Herbivore induction of the glucosinolates-myrosinase defense system: major trends, biochemical basis and ecological significance. Phytochemistry 8:149–170

    Article  CAS  Google Scholar 

  36. Tjallingii WF (2006) Salivary secretions by aphids interacting with proteins of phloem wound responses. J Exp Bot 57:739–745

    Article  CAS  PubMed  Google Scholar 

  37. Treutter D (2005) Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol 7:581–591

    Article  CAS  PubMed  Google Scholar 

  38. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  39. Wiesner M, Zrenner R, Krumbein A, Glatt H, Schreiner M (2013) Genotypic variation of the glucosinolate profile in Pak Choi (Brassica rapa ssp. chinensis). J Agric Food Chem 61:1943–1953

    Article  CAS  PubMed  Google Scholar 

  40. Yang YX, Wang MM, Ren Y, Onac E, Zhou G, Peng S, Xia XJ, Shi K, Zhou YH, Yu JQ (2015) Light-induced systemic resistance in tomato plants against root-knot nematode Meloidogyne incognita. Plant Growth Regul 76:167–175

    Article  CAS  Google Scholar 

  41. Zimmermann NS, Gerendas J, Krumbein A (2007) Identification of desulphoglucosinolates in Brassicaceae by LC/MS/MS: comparison of ESI and atmospheric pressure chemical ionisation-MS. Mol Nutr Food Res 51:1537–1546

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the technical assistance of Niklas Stukenberg in the installation LEDs.

Funding

This research project was funded by the German Research Foundation DFG, Grant Po 207/39-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ole Rechner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, J., Rechner, O., Neugart, S. et al. Effects of light-emitting diode treatments on Brevicoryne brassicae performance mediated by secondary metabolites in Brussels sprouts. J Plant Dis Prot 123, 321–330 (2016). https://doi.org/10.1007/s41348-016-0029-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-016-0029-9

Keywords

Navigation