Decadal variations of sea surface temperature in the eastern Arabian Sea and its impacts on the net primary productivity

Abstract

Ten-year satellite derived data (January 2007 to December 2016) were used to investigate the variability of Chlorophyll-a (Chl-a), sea surface temperature (SST), net primary production (NPP) in the eastern Arabian Sea (AS). This study is aimed to show the coupling of physical and biological processes to understand how temporal, annual and inter-annual variations occur and the forcing mechanisms behind these variations in the ocean environments. This work is linked to Indian Ocean Dipole and the El Niño/Southern Oscillation, which frequently co-occur and drives inter-annual changes within the AS. Vertically Generalized Production Model was used to estimate NPP using chl-a, Photosynthetically Available Radiation, euphotic depth, and maximum photosynthetic rate from SST. The relationship between NPP and SST showed change in the pattern over the study period. The NPP in the AS is characterized by an unusual decline during El Niño events. AS is more productive during summer monsoon (June–September) due to coastal upwelling, wind driven mixing and lateral advection processes. There was decline in NPP after 2014 and this trend continued in the following years. The present investigation revealed that the strong El Niño condition was observed in 2015 and productivity of AS declined by ~ 19%, while SST increased by ~ 2% from an overall average of 2007–2016. Increased SST and low productivity could result in low fish catch in AS. Increasing trend in SST could be attributed to the extreme events like cyclones occurring along the west coast of India.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Notes

  1. 1.

    http://esa-oceancolour-cci.org/.

  2. 2.

    https://oceancolor.gsfc.nasa.gov.

  3. 3.

    https://www.esrl.noaa.gov/psd/gcoswgsp/Timeseries/Niño34/,https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/DMI/.

  4. 4.

    https://ggweather.com/enso/oni.htm.

  5. 5.

    http://www.bom.gov.au/climate/iod/.

References

  1. 1.

    Trenberth, K. E., & Stepaniak, D. P. (2001). Indices of El nino evolution. Journal of Climate,14, 1697–1701. https://doi.org/10.1175/1520-0442(2001)014%3c1697:LIOENO%3e2.0.CO;2.

    Article  Google Scholar 

  2. 2.

    Currie, J. C., Lengaigne, M., Vialard, J., Kaplan, D., Aumont, O., Naqvi, S. W. A., et al. (2013). Indian Ocean dipole and El Niño/southern oscillation impacts on regional chlorophyll anomalies in the Indian Ocean. Biogeosciences,10, 6677–6698. https://doi.org/10.5194/bg-10-6677-2013.

    Article  Google Scholar 

  3. 3.

    Bastos, A., Running, S. W., Gouveia, C., & Trigo, R. M. (2013). The global NPP dependence on ENSO: La Niña and the extraordinary year of 2011. Journal of Geophysical Research: Biogeosciences,118(3), 1247–1255. https://doi.org/10.1002/jgrg.20100.

    Article  Google Scholar 

  4. 4.

    Saji, N., Goswami, B., Vinayachandran, P., & Yamagata, T. (1999). A dipole mode in the Tropical Ocean. Nature,401(6751), 360–363.

    Google Scholar 

  5. 5.

    ManzanoSarabia, M., Salinas Zavala, C. A., Kahru, M., LluchCota, S. E., & González Becerril, A. (2008). The impact of the 1997–1999 warm-SST and low-productivity episode on fisheries in the southwestern Gulf of Mexico. Hydrobiologia,610(1), 257–267. https://doi.org/10.1007/s10750-008-9440-y.

    Article  Google Scholar 

  6. 6.

    Marra, J., & Barber, R. T. (2005). Primary productivity in the Arabian Sea: A synthesis of JGOFS data. Progress in Oceanography,65(2–4), 159–175. https://doi.org/10.1016/j.pocean.2005.03.004.

    Article  Google Scholar 

  7. 7.

    Smith, S. L. (1995). The Arabian Sea: Mesozooplankton response to seasonal climate in a tropical ocean. ICES Journal of Marine Science,52(3–4), 427–438. https://doi.org/10.1016/1054-3139(95)80058-1.

    Article  Google Scholar 

  8. 8.

    Madhupratap, M., Kumar, S. P., Bhattathiri, P. M. A., Kumar, M. D., Raghukumar, S., Nair, K. K. C., et al. (1996). Mechanism of the biological response to winter cooling in the northeastern Arabian Sea. Nature,384(6609), 549–552. https://doi.org/10.1038/384549a0.

    Article  Google Scholar 

  9. 9.

    Behrenfeld, M. J., O’Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. L., Feldman, G. C., et al. (2006). Climate-driven trends in contemporary ocean productivity. Nature,444(7120), 752–755. https://doi.org/10.1038/nature05317.

    Article  Google Scholar 

  10. 10.

    Polovina, J. J., Howell, E. A., & Abecassis, M. (2008). Ocean’s least productive waters are expanding. Geophysical Research Letters. https://doi.org/10.1029/2007GL031745.

    Article  Google Scholar 

  11. 11.

    Nurdin, S., Mustapha, M. A., Lihan, T., & Zainuddin, M. (2017). Applicability of remote sensing oceanographic data in the detection of potential fishing grounds of Rastrelliger kanagurta in the archipelagic waters of Spermonde, Indonesia. Fisheries Research,196, 1–12. https://doi.org/10.1016/j.fishres.2017.07.029.

    Article  Google Scholar 

  12. 12.

    Krishnakumar, P. K., & Bhat, G. S. (2008). Seasonal and interannual variations of oceanographic conditions off Mangalore coast (Karnataka, India) in the Malabar upwelling system during 1995–2004 and their influences on the pelagic fishery. Fisheries Oceanography,17, 45–60. https://doi.org/10.1111/j.1365-2419.2007.00455.x.

    Article  Google Scholar 

  13. 13.

    Gauns, M., Madhupratap, M., Ramaiah, N., Jyothibabu, R., Fernandes, V., Paul, J. T., et al. (2005). Comparative accounts of biological productivity characteristics and estimates of carbon fluxes in the Arabian Sea and the Bay of Bengal. Deep Sea Research Part II: Topical Studies in Oceanography,52(14–15), 2003–2017. https://doi.org/10.1016/j.dsr2.2005.05.009.

    Article  Google Scholar 

  14. 14.

    Habeebrehman, H., Prabhakaran, M. P., Jacob, J., Sabu, P., Jayalakshmi, K. J., Achuthankutty, C. T., et al. (2008). Variability in biological responses influenced by upwelling events in the Eastern Arabian Sea. Journal of Marine Systems,74(1–2), 545–560. https://doi.org/10.1016/j.jmarsys.2008.04.002.

    Article  Google Scholar 

  15. 15.

    Banse, K., & McClain, C. R. (1986). Winter blooms of phytoplankton in the Arabian Sea as observed by the Coastal Zone Color Scanner. Marine Ecology Progress Series. https://doi.org/10.3354/meps034201.

    Article  Google Scholar 

  16. 16.

    Chassot, E., Bonhommeau, S., Dulvy, N. K., Mélin, F., Watson, R., Gascuel, D., et al. (2010). Global marine primary production constrains fisheries catches. Ecology Letters,13(4), 495–505. https://doi.org/10.1111/j.1461-0248.2010.01443.x.

    Article  Google Scholar 

  17. 17.

    Lam, V. W., Cheung, W. W., Reygondeau, G., & Sumaila, U. R. (2016). Projected change in global fisheries revenues under climate change. Scientific Reports,6, 32607. https://doi.org/10.1038/srep32607.

    Article  Google Scholar 

  18. 18.

    Blanchard, J. L., Jennings, S., Holmes, R., Harle, J., Merino, G., Allen, J. I., et al. (2012). Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences,367(1605), 2979–2989. https://doi.org/10.1098/rstb.2012.0231.

    Article  Google Scholar 

  19. 19.

    Burkill, P. H., Mantoura, R. F. C., & Owens, N. J. P. (1993). Biogeochemical cycling in the northwestern Indian Ocean: A brief overview. Deep Sea Research Part II: Topical Studies in Oceanography,40, 643–649. https://doi.org/10.1016/0967-0645(93)90049-S.

    Article  Google Scholar 

  20. 20.

    Swallow, J. C. (1984). Some aspects of the physical oceanography of the Indian Ocean. Deep Sea Research Part A: Oceanographic Research Papers,31(6–8), 639–650. https://doi.org/10.1016/0198-0149(84)90032-3.

    Article  Google Scholar 

  21. 21.

    Longhurst, A. L. (1998). Ecological geography of the sea (p. 398). San Diego: Academic Press.

    Google Scholar 

  22. 22.

    Ashjian, C. J., Smith, S. L., Flagg, C. N., & Idrisi, N. (2002). Distribution, annual cycle, and vertical migration of acoustically derived biomass in the Arabian Sea during 1994–1995. Deep Sea Research Part II. Topical Studies in Oceanography,49, 2377–2402. https://doi.org/10.1016/S0967-0645(02)00041-3.

    Article  Google Scholar 

  23. 23.

    Sathyendranath, S., Brewin, B., Mueller, D., Doerffer, R., Krasemann, H., Melin, F., et al. (2012). Ocean colour climate change initiative—Approach and initial results. IEEE International Geoscience and Remote Sensing Symposium. https://doi.org/10.1109/IGARSS.2012.6350979.

    Article  Google Scholar 

  24. 24.

    Behrenfeld, M. J., & Falkowski, P. G. (1997). A consumer’s guide to phytoplankton primary productivity models. Limnology and Oceanography,42, 1479–1491. https://doi.org/10.4319/lo.1997.42.7.1479.

    Article  Google Scholar 

  25. 25.

    CMFRI. (2012). Annual Report 2011–2012. Cochin: Central Marine Fisheries Research Institute.

    Google Scholar 

  26. 26.

    CMFRI. (2014). Annual report 2013–2014. Cochin: Central Marine Fisheries Research Institute.

    Google Scholar 

  27. 27.

    CMFRI. (2015). Annual report 2014–2015. Cochin: Central Marine Fisheries Research Institute.

    Google Scholar 

  28. 28.

    CMFRI. (2016). Annual report 2015–2016. Cochin: Central Marine Fisheries Research Institute.

    Google Scholar 

  29. 29.

    Kumar, S. P., Madhupratap, M., Kumar, M. D., Gauns, M., Muraleedharan, P. M., Sarma, V. V. S. S., et al. (2000). Physical control of primary productivity on a seasonal scale in central and eastern Arabian Sea. Journal of Earth System Science,109(4), 433–441. https://doi.org/10.1007/BF02708331.

    Article  Google Scholar 

  30. 30.

    Roxy, M. K., Modi, A., Murtugudde, R., Valsala, V., Panickal, S., Prasanna Kumar, S., et al. (2016). A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean. Geophysical Research Letters,43(2), 826–833. https://doi.org/10.1002/2015GL066979.

    Article  Google Scholar 

  31. 31.

    Yucel, N. (2018). Spatio-temporal variability of the size-fractionated primary production and chlorophyll in the Levantine Basin (northeastern Mediterranean). Oceanologia,60(3), 288–304. https://doi.org/10.1016/j.oceano.2017.12.003.

    Article  Google Scholar 

  32. 32.

    Vinayachandran, P. N. (2004). Summer cooling of the Arabian Sea during contrasting monsoons. Geophysical Research Letters,31(13), 1–4. https://doi.org/10.1029/2004GL019961.

    Article  Google Scholar 

  33. 33.

    Dinesh Kumar, P. K., Paul, Y. S., Muraleedharan, K. R., Murty, V. S. N., & Preenu, P. N. (2015). Comparison of long-term variability of sea surface temperature in the Arabian Sea and Bay of Bengal. Regional Studies in Marine Science,3, 67–75. https://doi.org/10.1016/j.rsma.2015.05.004.

    Article  Google Scholar 

  34. 34.

    Liao, X., Zhan, H., & Du, Y. (2016). Potential new production in two upwelling regions of the western Arabian Sea: Estimation and comparison. Journal of Geophysical Research: Oceans,121, 4487–4502. https://doi.org/10.1002/2016JC011707.

    Article  Google Scholar 

  35. 35.

    Matondkar, S. G. P., Dwivedi, R. M., Parab, S., Pednekar, S., Mascarenhas, A., Raman, M., et al. (2007). Phytoplankton in the Northeastern Arabian Sea exhibit seasonality. SPIE—The International Society for Optical Engineering. https://doi.org/10.1117/2.1200703.0616.

    Article  Google Scholar 

  36. 36.

    Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H. W., & Bouwman, A. F. (2005). Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: An overview of global nutrient export from watersheds (NEWS) models and their application. Global Biogeochemical Cycles,19(4), 1–11. https://doi.org/10.1029/2005GB002606.

    Article  Google Scholar 

  37. 37.

    Trenberth, K. E., & Fasullo, J. T. (2009). Global warming due to increasing absorbed solar radiation. Geophysical Research Letters,36(7), 1–5. https://doi.org/10.1029/2009GL037527.

    Article  Google Scholar 

  38. 38.

    Luo, X., Keenan, T. F., Fisher, J. B., Jiménez-Muñoz, J. C., Chen, J. M., Jiang, C., et al. (2018). The impact of the 2015/2016 El Niño on global photosynthesis using satellite remote sensing. Philosophical Transactions of the Royal Society B: Biological Sciences,373(1760), 20170409. https://doi.org/10.1098/rstb.2017.0409.

    Article  Google Scholar 

  39. 39.

    Kirby, R. R., Beaugrand, G., & Lindley, J. A. (2009). Synergistic effects of climate and fishing in a marine ecosystem. Ecosystems,12(4), 548–561. https://doi.org/10.1007/s10021-009-9241-9.

    Article  Google Scholar 

  40. 40.

    Overland, J. E., Alheit, J., Bakun, A., Hurrell, J. W., Mackas, D. L., & Miller, A. J. (2010). Climate controls on marine ecosystems and fish populations. Journal of Marine Systems,79(3–4), 305–315. https://doi.org/10.1016/j.jmarsys.2008.12.009.

    Article  Google Scholar 

  41. 41.

    Alabia, I. D., Saitoh, S. I., Igarashi, H., Ishikawa, Y., Usui, N., Kamachi, M., et al. (2015). Future projected impacts of ocean warming to potential squid habitat in western and central North Pacific. ICES Journal of Marine Sciences,73(5), 1343–1356. https://doi.org/10.1093/icesjms/fsv203.

    Article  Google Scholar 

  42. 42.

    Menon, N., Smitha, A., Shalin, S., Sankar, S., Sathyendranath, S., George, G., et al. (2019). Satellite chlorophyll concentration as an aid to understanding the dynamics of Indian oil sardine in the southeastern Arabian Sea. Marine Ecology Progress Series,617, 137–147. https://doi.org/10.3354/meps12806.

    Article  Google Scholar 

  43. 43.

    Piontkovski, S. A., & Queste, B. Y. (2016). Decadal changes of the Western Arabian sea ecosystem. International Aquatic Research,8(1), 49–64. https://doi.org/10.1007/s40071-016-0124-3.

    Article  Google Scholar 

Download references

Acknowledgements

The first author acknowledges Dr. Sathiyamoorthy, Head, Satellite Meteorology and Oceanography Research and Training (SMART) Lab and Dr. Mini Raman, Head, EPSA-BPSG-MED, Space Applications Center (SAC)—Indian Space Research Organization (ISRO) for providing all the necessary lab facilities to carry out this work. The first and third authors would like to acknowledge the support and encouragement given by Scientist-in-Charge, Research Centre of CMFRI, Mangalore and Director, CMFRI, Kochi.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Vinaya Kumari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vinaya Kumari, P., Jayappa, K.S., Thomas, S. et al. Decadal variations of sea surface temperature in the eastern Arabian Sea and its impacts on the net primary productivity. Spat. Inf. Res. (2020). https://doi.org/10.1007/s41324-020-00340-y

Download citation

Keywords

  • Primary productivity
  • Climate variability
  • Sea surface temperature
  • Fish catch