Principal component based fusion of land surface temperature (LST) and panchromatic (PAN) images

Abstract

The spatial details of panchromatic (PAN) images are always higher than land surface temperature (LST) images. The main aim of this paper is to develop a fusion technique for PAN and LST images of the LANDSAT8 satellite. The key is to appropriately estimate the spatial details of the PAN images while preserving the LST image’s thermal contents. The existing methods are incapable to fuse the thermal details of LST images while fully considering the PAN image’s structure, resulting in inaccurate LST estimation and spectral distortion. Principal components (PC) of PAN–LST images can efficiently transfer the spatial details of the PAN image in the spectral information of the LST image. In this paper, a novel fusion algorithm has been proposed named as “intensity transformation fusion model” (ITFM), to downscale LST images using the PC1–PC4. The results have shown that the root mean square error of PAN fused LST images were minimum for PC1 (0.63 °C) and maximum for PC4 (1.04 °C), respectively. The proposed ITFM method has enhanced spatial resolution and visual distinctiveness of LST images as well as precisely preserved the LST data. The fusion algorithm would help in studies related to the detection of land cover’s thermal emissions, thermal comfort monitoring, urban heat island effect analysis, and LST downscaling applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Pérez-Benito, C., Morillas, S., Jordán, C., & Conejero, J. A. (2017). Smoothing vs. sharpening of colour images: Together or separated. Applied Mathematics and Nonlinear Sciences, 2, 299–316. https://doi.org/10.21042/amns.2017.1.00025.

    Article  Google Scholar 

  2. 2.

    Zhan, W., Chen, Y., Zhou, J., et al. (2011). Sharpening thermal imageries: A generalized theoretical framework from an assimilation perspective. IEEE Transactions on Geoscience and Remote Sensing, 49, 773–789. https://doi.org/10.1109/TGRS.2010.2060342.

    Article  Google Scholar 

  3. 3.

    Dorigo, W. A., Scipal, K., Parinussa, R. M., et al. (2010). Error characterisation of global active and passive microwave soil moisture datasets. Hydrology and Earth System Sciences, 14, 2605–2616. https://doi.org/10.5194/hess-14-2605-2010.

    Article  Google Scholar 

  4. 4.

    Bonafoni, S., Anniballe, R., Gioli, B., & Toscano, P. (2016). Downscaling landsat land surface temperature over the urban area of Florence. European Journal of Remote Sensing, 49, 553–569. https://doi.org/10.5721/EuJRS20164929.

    Article  Google Scholar 

  5. 5.

    Blackett, M. (2014). Early analysis of landsat-8 thermal infrared sensor imagery of volcanic activity. Remote Sensing, 6, 2282–2295. https://doi.org/10.3390/rs6032282.

    Article  Google Scholar 

  6. 6.

    Meng, Q., Borders, B., & Madden, M. (2010). High-resolution satellite image fusion using regression kriging. International Journal of Remote Sensing, 31, 1857–1876. https://doi.org/10.1080/01431160902927937.

    Article  Google Scholar 

  7. 7.

    Huang, B., & Song, H. (2012). Spatiotemporal reflectance fusion via sparse representation. IEEE Transactions on Geoscience and Remote Sensing, 50, 3707–3716. https://doi.org/10.1109/TGRS.2012.2186638.

    Article  Google Scholar 

  8. 8.

    Jin, Y., Ge, Y., Wang, J., et al. (2018). Geographically weighted area-to-point regression kriging for spatial downscaling in remote sensing. Remote Sensing, 10, 1–22. https://doi.org/10.3390/rs10040579.

    Article  Google Scholar 

  9. 9.

    Chen, F., Yang, S., Yin, K., & Chan, P. (2017). Challenges to quantitative applications of Landsat observations for the urban thermal environment. Journal of Environmental Sciences, 59, 80–88. https://doi.org/10.1016/j.jes.2017.02.009.

    Article  Google Scholar 

  10. 10.

    Ke, Y., Im, J., Park, S., & Gong, H. (2016). Downscaling of MODIS one kilometer evapotranspiration using Landsat-8 data and machine learning approaches. Remote Sensing, 8, 1–26. https://doi.org/10.3390/rs8030215.

    Article  Google Scholar 

  11. 11.

    Ding, H., & Shi, W. (2017). A novel hybrid Pan-Sharpen method using IHS transform and optimization. Advances in Remote Sensing, 6(3), 229–243. https://doi.org/10.4236/ars.2017.63017.

    Article  Google Scholar 

  12. 12.

    Yang, J., Zhang, J., Li, H., et al. (2010). Pixel level fusion methods for remote sensing images: A current review. Remote Sensing IAPRS, XXXVIII, 680–686.

    Google Scholar 

  13. 13.

    Wang, Q., Shi, W., Li, Z., & Atkinson, P. M. (2016). Fusion of Sentinel-2 images. Remote Sensing of Environment, 187, 241–252. https://doi.org/10.1016/j.rse.2016.10.030.

    Article  Google Scholar 

  14. 14.

    Gharbia, R., El Baz, A. H., Hassanien, A. E., & Tolba, M. F. (2014). Remote sensing image fusion approach based on brovey and wavelets transforms. Advances in Intelligent Systems and Computing, 303, 311–321. https://doi.org/10.1007/978-3-319-08156-4_31.

    Article  Google Scholar 

  15. 15.

    Swets, D. L., Reed, B. C., Rowland J. D., & Marko, S. E. (1999) A weighted least-squares approach to temporal NDVI smoothing. In Proceedings of 1999 ASPRS annual conference (pp. 526–536).

  16. 16.

    Liu, J., & Liang, S. (2016). Pan-sharpening using a guided filter. International Journal of Remote Sensing, 37, 1777–1800. https://doi.org/10.1080/01431161.2016.1163749.

    Article  Google Scholar 

  17. 17.

    Nichol, J. (2009). An emissivity modulation method for spatial enhancement of thermal satellite images in urban heat island analysis. Photogrammetric Engineering and Remote Sensing, 75, 547–556. https://doi.org/10.14358/PERS.75.5.547.

    Article  Google Scholar 

  18. 18.

    Fabeku, B. B., Balogun, I. A., Adegboyega, S. A.-A., & Faleyimu, O. I. (2018). Spatio-temporal variability in land surface temperature and its relationship with vegetation types over Ibadan, South-Western Nigeria. Atmospheric Climate Science, 08, 318–336. https://doi.org/10.4236/acs.2018.83021.

    Article  Google Scholar 

  19. 19.

    Karnieli, A., Bayasgalan, M., Bayarjargal, Y., et al. (2006). Comments on the use of the Vegetation Health Index over Mongolia. International Journal of Remote Sensing, 27, 2017–2024. https://doi.org/10.1080/01431160500121727.

    Article  Google Scholar 

  20. 20.

    Huang, J., Wang, X., Li, X., et al. (2013). Remotely sensed rice yield prediction using multi-temporal NDVI data derived from NOAA’s-AVHRR. PLoS ONE. https://doi.org/10.1371/journal.pone.0070816.

    Article  Google Scholar 

  21. 21.

    Zhang, H. K., Roy, D. P., Yan, L., et al. (2018). Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences. Remote Sensing of Environment, 215, 482–494. https://doi.org/10.1016/j.rse.2018.04.031.

    Article  Google Scholar 

  22. 22.

    Russ J, Neal F (2015) Image enhancement in the spatial domain. In Image process handbook (7th edn., pp. 243–319). https://doi.org/10.1201/b18983-6.

  23. 23.

    Keyantash, J. A., & Dracup, J. A. (2004). An aggregate drought index: Assessing drought severity based on fluctuations in the hydrologic cycle and surface water storage. Water Resources Research, 40, 1–14. https://doi.org/10.1029/2003WR002610.

    Article  Google Scholar 

  24. 24.

    Jeevanand, N., Verma, P. A., & Saran, S. (2018). Fusion of hyperspectral and multispectral imagery with regression Kriging and the Lulu operators: A comparison. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-5, 583–588. https://doi.org/10.5194/isprs-archives-xlii-5-583-2018.

    Article  Google Scholar 

  25. 25.

    Govil, H., Guha, S., Dey, A., & Gill, N. (2019). Seasonal evaluation of downscaled land surface temperature: A case study in a humid tropical city. Heliyon, 5, e01923. https://doi.org/10.1016/j.heliyon.2019.e01923.

    Article  Google Scholar 

  26. 26.

    Merlin, O., Duchemin, B., Hagolle, O., et al. (2010). Disaggregation of MODIS surface temperature over an agricultural area using a time series of Formosat-2 images. Remote Sensing of Environment, 114, 2500–2512. https://doi.org/10.1016/j.rse.2010.05.025.

    Article  Google Scholar 

  27. 27.

    Islam, S. M. R., Huang, X., & Le, K. (2013). A novel image quality index for image quality assessment. Lecture Notes in Computer Science, 8228, 549–556. https://doi.org/10.1007/978-3-642-42051-1_68.

    Article  Google Scholar 

  28. 28.

    Kahraman, S., & Ertürk, A. (2017). A comprehensive review of Pansharpening algorithms for Göktürk-2 satellite images. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4, 263–270. https://doi.org/10.5194/isprs-annals-IV-4-W4-263-2017.

    Article  Google Scholar 

  29. 29.

    Loncan, L., De Almeida, L. B., Bioucas-Dias, J. M., et al. (2015). Hyperspectral pansharpening: A review. IEEE Geoscience and Remote Sensing Magazine, 3, 27–46. https://doi.org/10.1109/MGRS.2015.2440094.

    Article  Google Scholar 

  30. 30.

    Chen, Y., Zhan, W., Quan, J., et al. (2014). Disaggregation of remotely sensed land surface temperature: A generalized paradigm. IEEE Transactions on Geoscience and Remote Sensing, 52, 5952–5965. https://doi.org/10.1109/TGRS.2013.2294031.

    Article  Google Scholar 

  31. 31.

    Jassim, F. A. (2013). Image Inpainting by Kriging Interpolation Technique. World of Computer Science and Information Technology Journal, 3, 91–96.

    Google Scholar 

  32. 32.

    Xia, H., Chen, Y., Li, Y., & Quan, J. (2019). Combining kernel-driven and fusion-based methods to generate daily high-spatial-resolution land surface temperatures. Remote Sensing of Environment, 224, 259–274. https://doi.org/10.1016/j.rse.2019.02.006.

    Article  Google Scholar 

  33. 33.

    Jelének, J., Kopačková, V., Koucká, L., & Mišurec, J. (2016). Testing a modified PCA-based sharpening approach for image fusion. Remote Sensing. https://doi.org/10.3390/rs8100794.

    Article  Google Scholar 

  34. 34.

    Imagery S, Fusion D (2017) Satellite imagery data fusion, 11–13. https://doi.org/10.3390/rs9060639.

  35. 35.

    Mandanici, E., Tavasci, L., Corsini, F., & Gandolfi, S. (2019). A multi-image super-resolution algorithm applied to thermal imagery. Applied Geomatics, 11, 215–228. https://doi.org/10.1007/s12518-019-00253-y.

    Article  Google Scholar 

  36. 36.

    Gao, F., Hilker, T., Zhu, X., et al. (2015). Fusing landsat and MODIS data for vegetation monitoring. IEEE Geoscience and Remote Sensing Magazine, 3, 47–60. https://doi.org/10.1109/MGRS.2015.2434351.

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge, MNIT Jaipur institute for providing FLUKE Infrared calibrated thermometer in this research work. We thank NASA (National Aeronautics and Space Administration, United States) and U.S. Geological Survey for providing LANDSAT satellite data. Authors are also thankful to the anonymous reviewers.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kul Vaibhav Sharma.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharma, K.V., Khandelwal, S. & Kaul, N. Principal component based fusion of land surface temperature (LST) and panchromatic (PAN) images. Spat. Inf. Res. 29, 31–42 (2021). https://doi.org/10.1007/s41324-020-00333-x

Download citation

Keywords

  • Fusion
  • Land surface temperature
  • PAN Sharpening
  • Jaipur city
  • LANDSAT8