Assessing the changes in climate extremes over Karbi Anglong district of Assam, North-East India

Abstract

The changes in the climate extremes are not only an important indicator of climate change but also their spatio-temporal pattern influences the occurrence of droughts, floods, soil erosion, landslides as well as the livelihoods of the human beings. Therefore the present study tries to investigate recent changes in climate extremes using eight indices developed by the Expert Team on Climate Change Detection and Indices for the Karbi Anglong district of Assam situated in North-East India. This district has gone through several changes in the land use and land cover which is one of the significant factors for bringing changes in the regional climatic conditions. A non-parametric Mann–Kendall test, Modified Mann–Kendall test and Theil–Sen’s slope estimator are used to analyze the trends and trend magnitudes of the extreme indices of temperature and precipitation. The results show that there is an increase in the frequency of the warm days and nights, along with the presence of long dry spells, increasing extreme precipitation events with high intensity throughout the district for a period of 35 years. These changes in the climate extremes can have severe impacts on the availability of water resources which can affect the agricultural activities and reduce the availability of drinking water facilities for the tribal communities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    IPCC. (2007). Climate change 2007: Synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. Geneva: IPCC.

    Google Scholar 

  2. 2.

    Bala, G., Caldeira, K., Wickett, M., Phillips, T. J., Lobell, D. B., Delire, C., et al. (2007). Combined climate and carbon-cycle effects of large-scale deforestation. Proceedings of the National Academy of Sciences, 104(16), 6550–6555.

    Article  Google Scholar 

  3. 3.

    Govindasamy, B., Duffy, P. B., & Caldeira, K. (2001). Land use changes and Northern Hemisphere cooling. Geophysical Research Letters, 28(2), 291–294.

    Article  Google Scholar 

  4. 4.

    Davin, E. L., & de Noblet-Ducoudré, N. (2010). Climatic impact of global-scale deforestation: Radiative versus nonradiative processes. Journal of Climate, 23(1), 97–112.

    Article  Google Scholar 

  5. 5.

    Malhi, Y., Roberts, J. T., Betts, R. A., Killeen, T. J., Li, W., & Nobre, C. A. (2008). Climate change, deforestation, and the fate of the Amazon. Science, 5860(58), 169–172.

    Article  Google Scholar 

  6. 6.

    Semazzi, F. H., & Song, Y. (2001). A GCM study of climate change induced by deforestation in Africa. Climate Research, 17(2), 169–182.

    Article  Google Scholar 

  7. 7.

    Sen, O. L., Wang, Y., & Wang, B. (2004). Impact of Indochina deforestation on the East Asian summer monsoon. Journal of Climate, 17(6), 1366–1380.

    Article  Google Scholar 

  8. 8.

    Lawrence, D., & Vandecar, K. (2015). Effects of tropical deforestation on climate and agriculture. Nature Climate Change, 5(1), 27.

    Article  Google Scholar 

  9. 9.

    Tinker, P. B., Ingram, J. S., & Struwe, S. (1996). Effects of slash-and-burn agriculture and deforestation on climate change. Agriculture, Ecosystems & Environment, 58(1), 13–22.

    Article  Google Scholar 

  10. 10.

    Lele, N., & Joshi, P. K. (2009). Analyzing deforestation rates, spatial forest cover changes and identifying critical areas of forest cover changes in North-East India during 1972–1999. Environmental Monitoring and Assessment, 156(1–4), 159.

    Article  Google Scholar 

  11. 11.

    Jain, S. K., Kumar, V., & Saharia, M. (2013). Analysis of rainfall and temperature trends in northeast India. International Journal of Climatology, 33(4), 968–978.

    Article  Google Scholar 

  12. 12.

    Mondal, A., Khare, D., & Kundu, S. (2015). Spatial and temporal analysis of rainfall and temperature trend of India. Theoretical and Applied Climatology, 122(1–2), 143–158.

    Article  Google Scholar 

  13. 13.

    Dash, S. K., Sharma, N., Pattnayak, K. C., Gao, X. J., & Shi, Y. (2012). Temperature and precipitation changes in the north-east India and their future projections. Global and Planetary Change, 98, 31–44.

    Article  Google Scholar 

  14. 14.

    Dimri, A. P., Kumar, D., & Srivastava, M. (2018). Regional climate changes over northeast India: Present and future. In A. Singh, M. Punia, N. Haran, & T. Singh (Eds.), Development and disaster management (pp. 41–63). Singapore: Palgrave Macmillan.

    Google Scholar 

  15. 15.

    Pathak, A., Ghosh, S., & Kumar, P. (2014). Precipitation recycling in the Indian subcontinent during summer monsoon. Journal of Hydrometeorology, 15(5), 2050–2066.

    Article  Google Scholar 

  16. 16.

    Deka, R. L., Mahanta, C., Pathak, H., Nath, K. K., & Das, S. (2013). Trends and fluctuations of rainfall regime in the Brahmaputra and Barak basins of Assam, India. Theoretical and Applied Climatology, 114(1–2), 61–71.

    Article  Google Scholar 

  17. 17.

    Sonali, P., & Kumar, D. N. (2013). Review of trend detection methods and their application to detect temperature changes in India. Journal of Hydrology, 476, 212–227.

    Article  Google Scholar 

  18. 18.

    Goyal, M. K. (2014). Monthly rainfall prediction using wavelet regression and neural network: An analysis of 1901–2002 data, Assam, India. Theoretical and Applied Climatology, 118(1–2), 25–34.

    Article  Google Scholar 

  19. 19.

    Goyal, M. K. (2014). Statistical analysis of long term trends of rainfall during 1901–2002 at Assam, India. Water Resources Management, 28(6), 1501–1515.

    Article  Google Scholar 

  20. 20.

    Deka, P. K., & Dinesh, S. (2010). Shifting cultivation and its effects in regarding of perspective in Northern India. International Journal of Commerce and Business Management, 3(2), 157–165.

    Google Scholar 

  21. 21.

    Guite, N. (2013). Impact of jhum cultivation on forest cover in Karbi Anglong district of Assam. Dissertation, North Eastern Hill University.

  22. 22.

    Bhattacharyya, N. N. (2008). Assam, a systematic geography. New Delhi: Rajesh Publications.

    Google Scholar 

  23. 23.

    Kumar, D., Reddy, D. V., & Pandey, A. K. (2016). Paleoseismic investigations in the Kopili fault zone of North East India: Evidences from liquefaction chronology. Tectonophysics, 674, 65–75.

    Article  Google Scholar 

  24. 24.

    Bezbaruah, D. (2003). Megalithic ruins in Karbi Anglong district of Assam: A study in the context of Karbi culture. Thesis, Gauhati University.

  25. 25.

    India state of forest report. (2011). Retrieved March 14, 2019 from http://fsi.nic.in/cover_2011/assam.pdf.

  26. 26.

    Vulnerability of India’s forests to fires. (2017). Retrieved March 29, 2019 from http://fsi.nic.in/forest-fire-activities.

  27. 27.

    Ronghang, R., Teron, R., Tamuli, A. K., & Rajkhowa, R. C. (2012). Tribal societies and deforestation in Karbi Anglong district of Assam (India). The Ecoscan, 1, 231–236.

    Google Scholar 

  28. 28.

    Folland, C. K., Rayner, N. A., Brown, S. J., Smith, T. M., Shen, S. S. P., Parker, D. E., et al. (2001). Global temperature change and its uncertainties since 1861. Geophysical Research Letters, 28(13), 2621–2624.

    Article  Google Scholar 

  29. 29.

    Saha, S., et al. (2010). The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society, 91(8), 1015–1058.

    Article  Google Scholar 

  30. 30.

    Kishore, P., Jyothi, S., Basha, G., Rao, S. V. B., Rajeevan, M., Velicogna, I., et al. (2016). Precipitation climatology over India: Validation with observations and reanalysis datasets and spatial trends. Climate Dynamics, 46(1–2), 541–556.

    Article  Google Scholar 

  31. 31.

    Chaudhari, H. S., Pokhrel, S., Saha, S. K., Dhakate, A., & Hazra, A. (2015). Improved depiction of Indian summer monsoon in latest high resolution NCEP climate forecast system reanalysis. International Journal of Climatology, 35(10), 3102–3119.

    Article  Google Scholar 

  32. 32.

    Kundu, A., Chatterjee, S., Dutta, D., & Siddiqui, A. R. (2015). Meteorological trend analysis in Western Rajasthan (India) using geographical information system and statistical techniques. Journal of Environment and Earth Science, 5(5), 90–99.

    Google Scholar 

  33. 33.

    Tirkey, A. S., Ghosh, M., Pandey, A. C., & Shekhar, S. (2018). Assessment of climate extremes and its long term spatial variability over the Jharkhand state of India. The Egyptian Journal of Remote Sensing and Space Science, 21(1), 49–63.

    Article  Google Scholar 

  34. 34.

    Machiwal, D., Gupta, A., Jha, M. K., & Kamble, T. (2019). Analysis of trend in temperature and rainfall time series of an Indian arid region: Comparative evaluation of salient techniques. Theoretical and Applied Climatology, 136(1–2), 301–320.

    Article  Google Scholar 

  35. 35.

    Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 13(3), 245–259.

    Article  Google Scholar 

  36. 36.

    Kendall, M. G. (1975). Rank correlation methods. London: Charles Griffen.

    Google Scholar 

  37. 37.

    Patakumari, S. K., & O’Brien, N. (2019). Modified versions of Mann Kendall and Spearman’s Rho trend tests, package ‘modifiedmk’. Retrieved April 2, 2019 from https://cran.r-project.org/web/packages/modifiedmk/modifiedmk.pdf.

  38. 38.

    Hamed, K. H., & Rao, A. R. (1998). A modified Mann–Kendall trend test for autocorrelated data. Journal of Hydrology, 204(1–4), 182–196.

    Article  Google Scholar 

  39. 39.

    Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63(324), 1379–1389.

    Article  Google Scholar 

  40. 40.

    Basistha, A., Arya, D. S., & Goel, N. K. (2009). Analysis of historical changes in rainfall in the Indian Himalayas. International Journal of Climatology: A Journal of the Royal Meteorological Society, 29(4), 555–572.

    Article  Google Scholar 

  41. 41.

    Datta, P., & Das, S. (2019). Analysis of long-term seasonal and annual temperature trends in North Bengal, India. Spatial Information Research, 27(4), 475–496.

    Article  Google Scholar 

  42. 42.

    Dale, M. R., & Fortin, M. J. (2014). Spatial analysis: A guide for ecologists. Cambridge: Cambridge University Press.

    Google Scholar 

  43. 43.

    Bari, S. H., Rahman, M. T. U., Hoque, M. A., & Hussain, M. M. (2016). Analysis of seasonal and annual rainfall trends in the northern region of Bangladesh. Atmospheric Research, 176, 148–158.

    Article  Google Scholar 

  44. 44.

    Kaufman, Y. J., Tanré, D., & Boucher, O. (2002). A satellite view of aerosols in the climate system. Nature, 419(6903), 215.

    Article  Google Scholar 

  45. 45.

    Kaufman, Y. J., Hobbs, P. V., Kirchhoff, V. W. J. H., Artaxo, P., Remer, L. A., Holben, B. N., et al. (1998). Smoke, clouds, and radiation-Brazil (SCAR-B) experiment. Journal of Geophysical Research: Atmospheres, 103(D24), 31783–31808.

    Article  Google Scholar 

  46. 46.

    Das, A., Ghosh, P. K., Choudhury, B. U., Patel, D. P., Munda, G. C., Ngachan, S. V., & Chowdhury, P. (2009). Climate change in North East India: Recent facts and events–worry for agricultural management. In Proceedings of the workshop on impact of climate change on agriculture (pp. 32–37).

  47. 47.

    Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S., & Xavier, P. K. (2006). Increasing trend of extreme rain events over India in a warming environment. Science, 314(5804), 1442–1445.

    Article  Google Scholar 

  48. 48.

    Dash, S. K., Kulkarni, M. A., Mohanty, U. C., & Prasad, K. (2009). Changes in the characteristics of rain events in India. Journal of Geophysical Research: Atmospheres, 114(D10), 1–12.

    Article  Google Scholar 

  49. 49.

    Prokop, P., & Walanus, A. (2015). Variation in the orographic extreme rain events over the Meghalaya Hills in northeast India in the two halves of the twentieth century. Theoretical and Applied Climatology, 121(1–2), 389–399.

    Article  Google Scholar 

  50. 50.

    Paul, S., Ghosh, S., Oglesby, R., Pathak, A., Chandrasekharan, A., & Ramsankaran, R. A. A. J. (2016). Weakening of Indian summer monsoon rainfall due to changes in land use land cover. Scientific Reports, 6, 32177.

    Article  Google Scholar 

  51. 51.

    Marengo, J. A., Souza, C. A., Thonicke, K., Burton, C., Halladay, K., Betts, R. A., et al. (2018). Changes in climate and land use over the Amazon Region: Current and future variability and trends. Frontiers in Earth Science, 6, 228.

    Article  Google Scholar 

  52. 52.

    Bollasina, M. A., Ming, Y., & Ramaswamy, V. (2011). Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334(6055), 502–505.

    Article  Google Scholar 

  53. 53.

    Guo, L., Turner, A. G., & Highwood, E. J. (2015). Impacts of 20th century aerosol emissions on the South Asian monsoon in the CMIP5 models. Atmospheric Chemistry and Physics, 15(11), 6367–6378.

    Article  Google Scholar 

  54. 54.

    Giorgi, F., Im, E. S., Coppola, E., Diffenbaugh, N. S., Gao, X. J., Mariotti, L., et al. (2011). Higher hydroclimatic intensity with global warming. Journal of Climate, 24(20), 5309–5324.

    Article  Google Scholar 

  55. 55.

    Singh, D., Tsiang, M., Rajaratnam, B., & Diffenbaugh, N. S. (2014). Observed changes in extreme wet and dry spells during the South Asian summer monsoon season. Nature Climate Change, 4(6), 456.

    Article  Google Scholar 

  56. 56.

    Assam state action plan on climate change. (2015–2020). Retrieved March 16, 2019 from http://www.moef.gov.in.

Download references

Acknowledgements

The authors would like to express their appreciation to the Texas A&M University, U.S.A. for providing the temperature and precipitation data. The authors are also grateful to the Editor-in-Chief, Dr. Jung-Sup Um and the anonymous reviewers for their critical review and insightful comments on the earlier version of this paper. We also acknowledge the University Grants Commission (UGC), New Delhi, India, for financial support in the form of Junior Research Fellowship Award.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sahana Bose.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Datta, P., Bose, S. Assessing the changes in climate extremes over Karbi Anglong district of Assam, North-East India. Spat. Inf. Res. 28, 547–558 (2020). https://doi.org/10.1007/s41324-020-00312-2

Download citation

Keywords

  • Climate change
  • Extreme indices
  • Mann–Kendall test
  • Theil–Sen slope estimator
  • Karbi Anglong district