Skip to main content
Log in

Spatio-temporal trend and change point detection of winter temperature of North Bengal, India

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

The trend of temperature and homogeneity are the most significant issue for climate change allied research. This research aims to identify the long-term trend and change point detection of winter maximum (tmax), minimum (tmin) and average (tmean) temperature of six meteorological stations of North Bengal, India using 102 years’ time series data (1915–2016). To detect the monotonic trend and the rate of change, non-parametric Mann–Kendall (MK) test and Sen’s slope estimator were used. Homogeneity of winter temperature was studied using Buishand’s range test (B test) and Pettit’s test (P test). From the results, it was observed that most of the stations were showed significant (P < 0.05) warming trend in winter season. The rate of increasing was highest at station English Bazar in the month of December. On the other hand, significant changed of winter tmax and tmean occurred in around 1959 and 1952 respectively, while for tmin it was quite late, occurred in the year 1988. The populations of North Bengal who are dependent on temperature-related primary economic activities are getting benefitted from this study. In addition, these analyses will be helpful for policymakers and scientist to focus on micro-level planning and sustainable Rabi crops management in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barry, R. G., & Chorley, R. J. (2010). Atmosphere, weather and climate. London: Routledge.

    Google Scholar 

  2. Singh, S. (2016). Climatology. Allahabad: Pravalika Publication.

    Google Scholar 

  3. Khan, A., Chatterjee, S., & Bisai, D. (2017). Air temperature variability and trend analysis by non-parametric test for Kolkata observatory, West Bengal, India. Indian Journal of Geo Marine Sciences, 46(5), 966–971.

    Google Scholar 

  4. Jaswal, A. K. (2010). Recent winter warming over India-spatial and temporal characteristics of monthly maximum and minimum Temperature trends for January to march. Mausam, 61(2), 163–174.

    Google Scholar 

  5. Raha, G. N., Bhattacharjee, K., Das, M., Dutta, M., & Bandyopadhyay, S. (2014). Statistical study of surface temperature and rainfall over four stations in north Bengal. Mausam, 62(2), 179–184.

    Google Scholar 

  6. Hunter, D. E., Schwartz, S. E., Wagener, R., & Benkovitz, C. M. (1993). Seasonal, latitudinal, and secular variations in temperature trend: Evidence for influence of anthropogenic sulfate. Geophysical Reseach Letters, 20, 2455–2458.

    Article  Google Scholar 

  7. Dammo, M. N., Ibn Abubakar, B. S. U., & Sangodoyin, A. Y. (2015). Trend and change analysis of monthly and seasonal temperature series over North-eastern Nigeria. Journal of Geography, Environment and Earth Science International, 3(2), 1–8.

    Article  Google Scholar 

  8. Pramanik, S. K., & Jagannathan, P. (1954). Climate change in India (II)-temperature. Indian Journal of Meteorology & Geophysics, 5(1), 29–47.

    Google Scholar 

  9. Hingane, L. S., Rupa Kumar, K., & Ramana Murty, Bh. V. (1985). Long-term trends of surface air temperature in India. Journal of Climatology, 5, 521–528.

    Article  Google Scholar 

  10. Arora, M., Goel, N. K., & Singh, P. (2005). Evaluation of temperature trends over India. Hydrological Sciences Journal, 50(1), 81–93.

    Article  Google Scholar 

  11. Dash, S. K., Jenamani, R. K., Kalsi, S. R., & Panda, S. K. (2007). Some evidence of climate change in twentieth-century India. Climatic Change, 85, 299–321.

    Article  Google Scholar 

  12. Mandal, S., Choudhury, B. U., Mandal, M., & Bej, S. (2013). Trend analysis of weather variables in Sagar Island, West Bengal, India: a long-term perspective (1982–2010). Current Science, 105(7), 947–953.

    Google Scholar 

  13. Jain, S. K., Kumar, V., & Saharia, M. (2012). Analysis of rainfall and temperature trends in northeast India. International Journal of Climatology, 5, 5. https://doi.org/10.1002/joc.3483.

    Article  Google Scholar 

  14. Oza, M., & Kishtawal, C. M. (2014). Trends in rainfall and temperature patterns over northeast India. Earth Science, India, 7(4), 90–105.

    Article  Google Scholar 

  15. Tomar, C. S., Saha, D., Das, S., Saw, S., Bist, S., & Gupta, M. K. (2017). Analysis of temperature variability and trends over Tripura. Mausam, 68(1), 149–160.

    Google Scholar 

  16. Kumar, K., Mishra, N., & Gupta, S. (2014). Trend analysis of temperature by Mann–Kendall test in the high altitude regions of Uttarakhand, India. Asian Academic Research Journal of Multidisciplinary, 1(18), 387–399.

    Google Scholar 

  17. Chen, H., Guo, S., Xu, C. Y., & Singh, V. P. (2007). Historical temporal trends of hydro-climatic variables and run-off response to climate variability and their relevance in water resource management in the Hanjiang Basin. Journal of Hydrology, 344, 171–184.

    Article  Google Scholar 

  18. Suhaila, J., Jemain, A. A., Hamdan, M. F., & Zin, W. Z. W. (2011). Comparing rainfall patterns between regions in Peninsular Malaysia via a functional data analysis technique. Journal of Hydrology, 411(3), 197–206. https://doi.org/10.1016/j.jhydrol.2011.09.043.

    Article  Google Scholar 

  19. Firat, M., Dikbas, F., Koc, A. C., & Gungor, M. (2012). Analysis of temperature series: estimation of missing data and homogeneity test. Meteorological Applications, 19, 397–406. https://doi.org/10.1002/met.271.

    Article  Google Scholar 

  20. Omar, M. A., Mahmood, A. S., Cagatay, B., & Nermin, S. (2017). Homogeneity analysis of precipitation series in North Iraq. IOSR Journal of Applied Geology and Geophysics, 5(3), 57–63.

    Article  Google Scholar 

  21. Akinsanola, A. A., & Ogunjobi, K. O. (2015). Recent homogeneity analysis and long-term spatio-temporal rainfall trends in Nigeria. Theoretical and Applied Climatology, 128, 275. https://doi.org/10.1007/s00704-015-1701-x.

    Article  Google Scholar 

  22. Easterling, D. R., & Peterson, T. C. (1995). A new method for detecting undocumented discontinuities in climatological time series. International Journal of Climatology, 15, 369–377.

    Article  Google Scholar 

  23. Mann, H. B. (1945). Non parametric tests against trend. Econometrica, 13, 245–259.

    Article  Google Scholar 

  24. Kendall, M. G. (1975). Rank correlation methods. London: Griffin.

    Google Scholar 

  25. Odoulami, R. C., & Akinsanola, A. A. (2017). Recent assessment of West African summer monsoon daily rainfall trends. Weather, 5, 5. https://doi.org/10.1002/wea.2965.

    Article  Google Scholar 

  26. Das, J., & Bhattacharya, S. K. (2018). Trend analysis of long-term climatic parameters in Dinhata of Koch Bihar district, West Bengal. Spatial Information Research, 5, 1–10. https://doi.org/10.1007/s41324-018-0173-3.

    Article  Google Scholar 

  27. Pearson, E. S., & Hartley, H. O. (1966). Biometrika tables for statisticians (3rd ed., Vol. 1). London: Cambridge University Press.

    Google Scholar 

  28. Wijngaard, J. B., Klein Tank, A. M. G., & Konnen, G. P. (2003). Homogeneity of 20th century European daily temperature and precipitation series. International Journal of Climatology, 23, 679–692.

    Article  Google Scholar 

  29. Buishand, T. A. (1982). Some methods for testing the homogeneity of rainfall records. Journal of Hydrology, 58, 11–27.

    Article  Google Scholar 

  30. Pettitt, A. N. (1979). A non-parametric approach to the change-point detection. Applied Statistics, 28, 126–135.

    Article  Google Scholar 

  31. Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63, 1379–1389.

    Article  Google Scholar 

  32. Gilbert, R. O. (1987). Statistical methods for environmental pollution monitoring. Hoboken: Wiley.

    Google Scholar 

  33. Jangra, S., & Singh, M. (2011). Analysis of rainfall and temperatures for climatic trend in Kullu valley. Mausam, 62(1), 77–84.

    Google Scholar 

  34. Jain, S. K., & Kumar, V. (2012). Trend analysis of rainfall and temperature data for India. Current Science, 102(1), 37–49.

    Google Scholar 

  35. Warwade, P., Sharma, N., Ahrens, B., & Pandey, A. (2015). Characterization and analysis of the trend of climate variable (Temperatures) for the North-Eastern region of the India. International Journal of Recent Scientific Research, 6(4), 3618–3624.

    Google Scholar 

  36. Shrestha, A. B., Wake, C. P., Mayewski, P. A., & Dibb, J. E. (1999). Maximum temperature trends in the Himalaya and its vicinity: an analysis based on temperature records from Nepal for the period 1971–94. Journal of Climate, 12(9), 2775–2786.

    Article  Google Scholar 

  37. Domroes, M., & El-Tantawi, A. (2005). Recent temporal and spatial temperature changes in Egypt. International Journal of Climatology, 25(1), 51–63.

    Article  Google Scholar 

  38. Gbode, I. E., Akinsanola, A. A., & Ajayi, V. O. (2015). Recent changes of some observed climate extreme events in Kano. International Journal of Atmospheric Sciences. Article ID 298046. http://dx.doi.org/10.1155/2015/298046.

  39. Jacob, D., & Walland, D. (2016). Variability and long-term change in Australian temperature and precipitation extremes. Weather and Climate Extremes, 14, 36–55.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the India Water Portal for providing free download of various dataset used in the analysis. Also, the authors would like to thank anonymous reviewers and editor for their helpful comments on the previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanta Das.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This paper does not contain any studies with human participants performed by any of the authors. This paper does not contain any studies with animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, J., Mandal, T. & Saha, P. Spatio-temporal trend and change point detection of winter temperature of North Bengal, India. Spat. Inf. Res. 27, 411–424 (2019). https://doi.org/10.1007/s41324-019-00241-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-019-00241-9

Keywords

Navigation