Skip to main content
Log in

The impact of urban green areas on the surface thermal environment of a tropical city: a case study of Ibadan, Nigeria

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

This study assesses the relative impact of green areas on the surface thermal characteristics of an urban area. From this study, the existence of the Park Cool Island (PCI) around the green areas and surrounding zones of the green area was noted, as surface temperatures were lower at the green areas and higher at the outer boundaries. Agodi gardens had the highest vegetation cover of 62.1% and was the area with the lowest mean surface temperature (26.79 °C), while Agugu green area had the lowest vegetation cover of 20.7% and had the highest mean surface temperature (27.75 °C). Green areas with higher vegetation cover percentages had higher rate of change of PCI with buffer distance compared to the other two green areas that had lower percentages of vegetation cover. The green areas were identified for their cooling roles on surface temperature within the urban centres of Ibadan as the surface temperature intensities were of the order of 1–2 °C lower within the 500-m buffer zone. The findings, therefore, brings to light the need for increased greenery within the urban areas of the city, and also provide information for urban planners and designers on the need for green spaces in mitigating heat island phenomenon in the city.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86(3), 370–384.

    Article  Google Scholar 

  2. Ngom, R., Gosselin, P., & Blais, C. (2016). Reduction of disparities in access to green spaces: Their geographic insertion and recreational functions matter. Applied Geography, 66, 35–51. https://doi.org/10.1016/j.apgeog.2015.11.008.

    Article  Google Scholar 

  3. Li, X., Zhou, W., Ouyang, Z., Xu, W., & Zheng, H. (2012). Spatial pattern of greenspace affects land surface temperature: Evidence from the heavily urbanized Beijing metropolitan area, China. Landscape Ecology, 27, 887–898.

    Article  Google Scholar 

  4. Dimoudi, A., & Nikolopoulou, M. (2003). Vegetation in the urban environment: Micro-climate analysis and benefits. Energy and Buildings, 35, 69–76.

    Article  Google Scholar 

  5. Georgi, N. J., & Dimitriou, D. (2010). The contribution of urban green spaces to the improvement of environment in cities: Case study of Chania, Greece. Building and Environment, 45, 1401–1414.

    Article  Google Scholar 

  6. Jauregui, E. (1990). Influence of a large urban park on temperature and convective precipitation in a tropical city. Energy and Buildings, 15, 457–463.

    Article  Google Scholar 

  7. Chen, Y., & Wong, N. H. (2006). Thermal benefits of city parks. Energy and Buildings, 38, 105–120.

    Article  Google Scholar 

  8. Vidrih, B., & Medved, S. (2013). Multiparametric model of urban park cooling island. Urban Forestry & Urban Greening, 12, 220–229. https://doi.org/10.1016/j.ufug.2013.01.002.

    Article  Google Scholar 

  9. Ren, Z., He, X., Zheng, H., Zhang, D., Yu, X., Shen, G., et al. (2013). Estimation of the relationship between urban park characteristics and Park Cool Island intensity by remote sensing data and field measurement. Forests, 4, 868–886. https://doi.org/10.3390/f4040868.

    Article  Google Scholar 

  10. Declet-Barreto, J., Brazel, A. J., Martin, C. A., Chow, W. T. L., & Harlan, S. L. (2013). Creating the park cool island in an inner-city neighborhood: Heat mitigation strategy for Phoenix, AZ. Urban Ecosystems, 16, 617–635. https://doi.org/10.1007/s11252-012-0278-8.

    Article  Google Scholar 

  11. Xu, X., Cai, H., Qiao, Z., Wang, L., Jin, C., Ge, Y., et al. (2017). Impacts of park landscape structure on thermal environment using QuickBird and Landsat images. Chinese Geographical Science, 27(5), 818–826. https://doi.org/10.1007/s11769-017-0910-x.

    Article  Google Scholar 

  12. Anjos, M., & Lopes, A. (2017). Urban Heat Island and Park Cool Island Intensities in the Coastal City of Aracaju, North-Eastern Brazil. Sustainability, 9(8), 1379. https://doi.org/10.3390/su9081379.

    Article  Google Scholar 

  13. Yang, C., He, X., Wang, R., Yan, F., Yu, L., Bu, K., et al. (2017). The effect of urban green spaces on the urban thermal environment and its seasonal variations. Forests, 8(5), 153.

    Article  Google Scholar 

  14. Wang, X., Cheng, H., Xi, J., Yang, G., & Zhao, Y. (2018). Relationship between park composition, vegetation characteristics and cool island effect. Sustainability, 10(3), 587. https://doi.org/10.3390/su10030587.

    Article  Google Scholar 

  15. Chibuike, E. M., Ibukun, A. O., Abbas, A., & Kunda, J. (2018). Assessment of green parks cooling effect on Abuja urban microclimate using geospatial techniques. Remote Sensing Applications: Society and Environment, 11, 11–21.

    Article  Google Scholar 

  16. Santamouris, M., Synnefa, A., & Karlessi, T. (2011). Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Solar Energy, 85(12), 3085–3102.

    Article  Google Scholar 

  17. Chen, A., Yao, X. A., & Sun, R. H. (2014). Effect of urban green patterns on surface urban cool islands and its seasonal variations. Urban Forestry & Urban Greening, 13(4), 646–654. https://doi.org/10.1016/j.ufug.2014.07.006.

    Article  Google Scholar 

  18. Doick, K. J., Peace, A., & Hutchings, T. R. (2014). The role of one large greenspace in mitigating London’s nocturnal urban heat island. Science of the Total Environment, 493, 662–671. https://doi.org/10.1016/j.scitotenv.2014.06.048.

    Article  Google Scholar 

  19. Ishola, K. A., Okogbue, E. C., & Adeyeri, O. E. (2016). Dynamics of surface urban biophysical compositions and its impact on land surface thermal field. Modelling Earth Systems and Environment, 2, 208. https://doi.org/10.1007/s40808-016-0265-9.

    Google Scholar 

  20. Daramola, M. T., Eresanya, E. O., & Ishola, K. A. (2018). Assessment of the thermal response of variations in land surface around an urban area. Modelling Earth Systems and Environment. https://doi.org/10.1007/s40808-018-0463-8.

    Google Scholar 

  21. Ogunjobi, K. O., Daramola, M. T., & Akinsanola, A. A. (2018). Estimation of surface energy fluxes from remotely sensed data over Akure, Nigeria. Spatial Information Research, 26(1), 77–89. https://doi.org/10.1007/s41324-017-0149-8.

    Article  Google Scholar 

  22. Li, X., Zhou, Y., Asrar, G. R., Imhoff, M., & Li, X. (2017). The surface urban heat island response to urban expansion: A panel analysis for the conterminous United States. Science of the Total Environment, 605–606, 426–435. https://doi.org/10.1016/j.scitotenv.2017.06.229.

    Article  Google Scholar 

  23. Nigerian bureau of Statistics. (2011). Annual abstract of statistics. Available online: http://istmat.info/files/uploads/53129/annual_abstract_of_statistics_2011.pdf. Retrieved 10 April 2018.

  24. Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127–150.

    Article  Google Scholar 

  25. Jiang, Z., Huete, A. R., Didan, K., & Miura, T. (2008). Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment, 112, 3833–3845.

    Article  Google Scholar 

  26. Xue, J., & Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and applications. Journal of Sensors. https://doi.org/10.1155/2017/1353691.

    Google Scholar 

  27. Liu, H. Q., & Huete, A. (1995). A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Transactions on Geoscience and Remote Sensing, 33(2), 457–465.

    Article  Google Scholar 

  28. Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing Environment, 83, 195–213.

    Article  Google Scholar 

  29. Matsushita, B., Yang, W., Chen, J., Onda, Y., & Qiu, G. (2007). Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to topographic effects: A case study in high-density cypress forest. Sensors, 7, 2636–2651.

    Article  Google Scholar 

  30. Armson, D., Stringer, P., & Ennos, A. R. (2012). The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban Forestry & Urban Greening, 11(3), 245–255.

    Article  Google Scholar 

  31. Manglani, P. (2004). Radiative exchanges between a tree and a building surface. PhD thesis, Arizona State University, Phoenix, Arizona.

  32. Shiflett, S. A., Liang, L. L., Crum, S. M., Feyis, G. L., Wang, J., & Jenerette, G. D. (2017). Variation in the urban vegetation, surface temperature, air temperature nexus. Science of the Total Environment, 579, 495–505.

    Article  Google Scholar 

  33. Bokaie, M., Zarkesh, M. K., Arasteh, P. D., & Hosseini, A. (2016). Assessment of urban heat island based on the relationship between land surface temperature and land use/land cover in Tehran. Sustainable Cities and Society. https://doi.org/10.1016/j.scs.2016.03.009.

    Google Scholar 

  34. Pal, S., & Ziaul, S. K. (2017). Detection of land use and land cover change and land surface temperature in English Bazar urban centre. The Egyptian Journal of Remote Sensing and Space Science, 20, 125–145.

    Article  Google Scholar 

  35. Daramola, M. T., & Eresanya, E. O. (2017). Land surface temperature analysis over Akure. Journal of Environment and Earth Science, 7(5), 97–105.

    Google Scholar 

  36. Balogun, I. A., & Ishola, K. A. (2018). A hybrid approach for monitoring future thermal environment in tropical areas. Spatial Information Research. https://doi.org/10.1007/s41324-018-0165-3.

    Google Scholar 

  37. Cao, X., Onishib, A., Chena, J., & Imurabet, H. (2010). Quantifying the cool island intensity of urban parks using ASTER and IKONOS data. Landscape and Urban Planning, 96, 224–231.

    Article  Google Scholar 

  38. Shashua-Bar, L., Tsiros, I. X., & Hoffman, M. E. (2010). A modeling study for evaluating passive cooling scenarios in urban streets with trees. Case study: Athens, Greece. Building and Environment, 45(12), 2798–2807.

    Article  Google Scholar 

  39. Estoque, R. C., Murayama, Y., & Myint, S. W. (2017). Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Science of the Total Environment, 577, 349–359.

    Article  Google Scholar 

  40. Chang, C. R., Li, M. H., & Chang, S. D. (2007). A preliminary study on the local cool-island intensity of Taipei city parks. Landscape and Urban Planning, 80, 386–395.

    Article  Google Scholar 

  41. Zhang, X., Zhong, T., Feng, X., & Wang, K. (2009). Estimation of the relationship between forest patches and urban land surface temperature with remote sensing. International Journal of Remote Sensing, 30, 2105–2118.

    Article  Google Scholar 

  42. Feyisa, G. L., Dons, K., & Meilby, H. (2014). Efficiency of parks in mitigating urban heat island effect: An example from Addis Ababa. Landscape and Urban Planning, 123, 87–95. https://doi.org/10.1016/j.landurbplan.2013.12.008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojolaoluwa T. Daramola.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balogun, I.A., Daramola, M.T. The impact of urban green areas on the surface thermal environment of a tropical city: a case study of Ibadan, Nigeria. Spat. Inf. Res. 27, 23–36 (2019). https://doi.org/10.1007/s41324-018-0219-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-018-0219-6

Keywords

Navigation