Skip to main content
Log in

Synergistic object-based multi-class feature extraction in urban landscape using airborne LiDAR data

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

This study addresses the potential of geospatial information extraction by using light detection and ranging (LiDAR) data and aerial optical images in an urban landscape. We have adopted an advanced geographic object-based image analysis (GEOBIA) technique consisting of rule-based procedures relying upon the integration of spectral, textural, and spatial characteristics of aerial imagery and roughness of point cloud of LiDAR to fuse aerial imagery and airborne LiDAR for effective urban geospatial information extraction. This study is focused on the extraction of four tangible geospatial features, e.g., buildings, trees, marine vessels, and cars. LiDAR-derived normalized digital surface model (nDSM) was insufficient in delineating the polygon features because of the sparse point cloud density at the edges of features, which greatly affected the accuracy of extracting the polygon features. Therefore aerial imagery was supplemented in order to enhance the quality of extraction. The final feature extraction accuracy was assessed against manual digitization by visual interpretation, statistical analysis, and confusion matrix. The accuracy of feature extraction was found to be ranging from 90 to 95%. The accuracy of buildings class was improved using intensity image generated from LiDAR data and Hough image along with morphological operations. In a nutshell, this study highlights robust improvements in the geospatial extraction of urban features by merging more than one dataset synergistically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. IGARSS Contest: http://www.grss-ieee.org/community/technical-committees/data-fusion/2015-ieee-grss-data-fusion-contest.

References

  1. Bhaskaran, S., Eric, N., Jimenez, K., & Bhatia, S. K. (2013). Rule-based classification of high-resolution imagery over urban areas in New York City. Geocarto International, 28(6), 527–545. https://doi.org/10.1080/01431161.2013.879350.

    Article  Google Scholar 

  2. Hamedianfar, A., & Shafri, H. Z. M. (2013). Development of fuzzy rule-based parameters for urban object-oriented classification using very high resolution imagery. Geocarto International, 29(3), 268–292. https://doi.org/10.1080/10106049.2012.760006.

    Article  Google Scholar 

  3. Blaschke, T., & Strobl, J. (2001). What’s wrong with pixels? Some recent developments interfacing remote sensing and GIS. GIS—ZeitschriftfürGeoinformationssysteme, 14(6), 12–17. https://doi.org/10.1080/13658816.2011.566569.

    Article  Google Scholar 

  4. Hu, X., & Weng, Q. (2010). Impervious surface area extraction from IKONOS imagery using an object-based fuzzy method. Geocarto International, 26(1), 3–20. https://doi.org/10.1080/10106049.2010.535616.

    Article  Google Scholar 

  5. Li, X., Myint, S. W., Zhang, Y., Galletti, C., Zhang, X., & Turner, B. L. (2014). Object-based land- cover classification for metropolitan Phoenix, Arizona, using aerial photography. International Journal of Applied Earth Observation and Geoinformation, 33, 321–330. https://doi.org/10.1016/j.jag.2014.04.018.

    Article  Google Scholar 

  6. Li, X., Myint, S. W., Zhang, Y., Galletti, C., Zhang, X., & Turner, B. L. (2014). Object-based land- cover classification for metropolitan Phoenix, Arizona, using aerial photography. International Journal of Applied Earth Observation and Geoinformation, 33, 321–330. https://doi.org/10.1016/j.jag.2014.04.018.

    Article  Google Scholar 

  7. Chen, Z., & Gao, B. (2014). An object-based method for urban land cover classification using airborne LiDAR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(10), 4243–4254. https://doi.org/10.1109/JSTARS.2014.2332337.

    Article  Google Scholar 

  8. Xu, S., Vosselman, G., & Oude, E. S. (2014). Multiple-entity based classification of airborne laser scanning data in urban areas. ISPRS Journal of Photogrammetry and Remote Sensing, 88, 1–15. https://doi.org/10.1016/j.isprsjprs.2013.11.008.

    Article  Google Scholar 

  9. Xu, S., Vosselman, G., & Oude, E. S. (2014). Detection and classification of changes in buildings from airborne laser scanning data. Remote Sensing, 7, 17051–17076. https://doi.org/10.3390/rs71215867.

    Article  Google Scholar 

  10. Bandyopadhyay, M., van Aardt, J. A. N., & Cawse-Nicholson, K. (2013). Classification and extraction of trees and buildings from urban scenes using discrete return LiDAR and aerial color imagery. In M. D. Turner & G. W. Kamerman (Eds.), Laser Radar Technology and Applications XVIII, Proc. of SPIE Vol. 8731, 873105. https://doi.org/10.1117/12.2015890

  11. Swatantran, A., Dubayah, R., Roberts, D., Hofton, M., & Blair, J. B. (2011). Mapping biomass and stress in the sierra nevada using LiDAR and hyperspectral data fusion. Remote Sensing of Environment, 115(11), 2917–2930. https://doi.org/10.1016/j.rse.2010.08.027.

    Article  Google Scholar 

  12. Naidoo, L., Cho, M., Mathieu, R., & Asner, G. (2012). Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a random forest data mining environment. ISPRS Journal Photogrammetry and Remote Sensing, 69, 167–179. https://doi.org/10.1016/j.isprsjprs.2012.03.005.

    Article  Google Scholar 

  13. Chen, G., Weng, Q., Hay, G. J., & He, Y. (2018). Geographic object-based image analysis (GEOBIA): emerging trends and future opportunities. GIScience and Remote Sensing. https://doi.org/10.1080/15481603.2018.1426092.

    Article  Google Scholar 

  14. Hamedianfar, A., & Shafri, H. Z. M. (2014). Improving detailed rule-based feature extraction of urban areas from WorldView-2 image and LiDAR data. International Journal of Remote Sensing, 35(5), 1876–1899. https://doi.org/10.1080/01431161.2013.879350.

    Article  Google Scholar 

  15. Gerke, M., & Xiao, E. (2014). Fusion of airborne laser scanning point clouds and images for supervised and unsupervised scene classification. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 78–92. https://doi.org/10.1016/j.isprsjprs.2013.10.011.

    Article  Google Scholar 

  16. Zhang, J., Duan, M., Yan, Q., & Lin, X. (2014). Automatic vehicle extraction from airborne LiDAR data using an object-based point cloud analysis method. Remote Sensing, 6(9), 8405–8423. https://doi.org/10.3390/rs6098405.

    Article  Google Scholar 

  17. Khosravipour, A., Skidmore, A. K., & Isenburg, M. (2016). Generating spike-free Digital Surface Models using raw LiDAR point clouds: A new approach for forestry applications. International Journal of Applied Earth Observation and Geoinformation, 52, 104–114.

    Article  Google Scholar 

  18. Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2–16.

    Article  Google Scholar 

  19. Blaschke, T., Hay, J. G., Kelly, M., Lang, S., Hofmann, P., Addink, E., et al. (2014). Geographic object-based image analysis—towards a new paradigm. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 180–191. https://doi.org/10.1016/j.isprsjprs.2013.09.014.

    Article  Google Scholar 

  20. Trimble Definiens. (2010). Advanced example of building extraction for intermediate and advanced users; Classification of buildings using LiDAR and RGB data.

  21. Zevenbergen, L. W., & Thorne, C. R. (1987). Quantitative analysis of land surface topography. Earth Surface Processes and Landforms [EARTH SURF. PROCESS. LANDFORMS.], 12(1), 47–56.

    Article  Google Scholar 

  22. Crommelinck, S., Bennett, R., Gerke, M., Nex, F., Yang, M., & Vosselman, G. (2016). Review of automatic feature extraction from high-resolution optical sensor data for UAV-based cadastral mapping. Remote Sensing, 8(8), 689. https://doi.org/10.3390/rs8080689.

    Article  Google Scholar 

  23. Crommelinck, S., Bennett, R., Gerke, M., Yang, M., & Vosselman, G. (2017). Countour detection for UAV-based cadastral mapping. Remote Sensing, 9(2), 171. https://doi.org/10.3390/rs9020171.

    Article  Google Scholar 

  24. Singh, M., Malhi, Y., & Bhagwat, S. (2014). Biomass estimation of mixed forest landscape using a Fourier transform texture-based approach on very-high-resolution optical satellite imagery. International Journal of Remote Sensing, 35(9), 3331–3349.

    Article  Google Scholar 

  25. Singh, M., Evans, D., Tan, B. S., & Nin, C. S. (2015). Mapping and characterizing selected canopy tree species at the Angkor world heritage site in Cambodia using aerial data. PLoS ONE, 10(4), 1–26. https://doi.org/10.1371/journal.pone.0121558.

    Article  Google Scholar 

  26. Babawuro, U., & Beiji, Z. (2012). satellite imagery cadastral features extractions using image processing algorithms: A viable option for cadastral science. IJCSI International Journal of Computer Science, 9(4), 30–38. ISSN: 1694-0814.

  27. Uzar, M., & Yastikli, N. (2013). Automatic Building Extraction Using LiDAR and Aerial Photographs. Boletim de Ciências Geodésicas sec. Artigos, Curitiba, 19(2), 153–171.

    Article  Google Scholar 

  28. Wassie, Y. A., Koeva, M. N., Benett, R. M., & Lemmen, C. H. J. (2017). A procedure for semi-automated cadastral boundary feature extraction from high-resolution imagery. Journal of Spatial Science. https://doi.org/10.1080/14498596.2017.1345667.

    Article  Google Scholar 

  29. Dragut, L., & Eisank, C. (2012). Automated object-based classification of topography from SRTM data. Geomorphology, 141–142, 21–33. https://doi.org/10.1016/j.geomorph.2011.12.001.

    Article  Google Scholar 

  30. Yu, Q., Gong, P., Clinton, N., Biging, G., Kelly, M., & Schirokauer, D. (2006). Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogrammetric Engineering and Remote Sensing, 72(7), 799–811. https://doi.org/10.14358/PERS.72.7.799.

    Article  Google Scholar 

  31. Jawak, S., & Luis, A. (2013). Very-high resolution remotely sensed satellite data for improved land cover extraction of Larsemann Hills, east Antarctica. Journal of Applied Remote Sensing, 7(1), 073460. https://doi.org/10.1117/1.JRS.7.073460.

    Article  Google Scholar 

  32. Jawak, S., & Luis, A. (2013). A spectral index ratio-based Antarctic land-cover mapping using hyperspatial 8-band WorldView-2 imagery. Polar Science, 7, 18–38. https://doi.org/10.1016/j.polar.2012.12.002.

    Article  Google Scholar 

  33. Jawak, S., Panditrao, S., & Luis, A. (2013). Validation of high-density airborne LiDAR-based feature extraction using very high resolution optical remote sensing data. Advances in Remote Sensing, 2(4), 297–311. https://doi.org/10.4236/ars.2013.24033.

    Article  Google Scholar 

  34. Ahmad, F., Goparaju, L., & Qayum, A. (2017). natural resource mapping using landsat and lidar towards identifying digital elevation, digital surface and canopy height models. International Journal of Environmental Sciences and Natural Resources. https://doi.org/10.19080/IJESNR.2017.02.555580.

    Article  Google Scholar 

  35. Zabuawala, S., Nguyen, H., Wei, H., & Yadegar, J. (2009). Fusion of LiDAR and aerial imagery for accurate building footprint extraction. In K. S. Niel, & D. Fofi, (Eds.), Image processing: machine vision applications II, proceedings of SPIE-IS&T electronic imaging, SPIE 7251, 72510Z SPIE. https://doi.org/10.1117/12.806141.

  36. Awrangjeb, M., Fraser, C., & Lu, G. (2015). Building change detection from lidar point cloud data based on connected component analysis. In ISPRS annals of the photogrammetry, remote sensing and spatial information sciences, volume II-3/W5 (pp. 393–400). https://doi.org/10.5194/isprsannals-ii-3-w5-393-2015.

    Article  Google Scholar 

  37. Rehman, M., & Rashid, T. (2015). Urban tree damage estimation using airborne laser scanner data and geographic information systems: An example from 2007 Oklahoma Ice Storm. Urban Forestry and Urban Greening, 14(3), 562–572. https://doi.org/10.1016/j.ufug.2015.05.008.

    Article  Google Scholar 

  38. Gerke, M., Kerle, N., Vosselman, G., & Vetrivel, A. (2015). Identification of damage in buildings based on gaps in 3D point clouds from very high resolution oblique airborne images. ISPRS Journal of Photogrammetry And Remote Sensing, 105, 61–78. https://doi.org/10.1016/j.isprsjprs.2015.03.016.

    Article  Google Scholar 

  39. Gerke, M., Kerle, N., & Galarreta, F. (2015). UAV-based urban structural damage assessment using object-based image analysis and semantic reasoning. Natural Hazards and Earth System Sciences, 15, 1087–1101. https://doi.org/10.5194/nhess-15-1087-2015.

    Article  Google Scholar 

  40. Gerke, M., Kerle, N., Vosselman, G., & Vetrivel, A. (2015). Segmentation of UAV-based images incorporating 3D point cloud information. In The international archives of photogrammetry, remote sensing and spatial information sciences, volume XL-3/W2. https://doi.org/10.5194/isprsarchives-xl-3-w2-261-2015.

    Article  Google Scholar 

  41. Awrangjeb, M., & Lu, G. (2014). Automatic building footprint extraction and regularization from LIDAR point cloud data. In International conference on digital image computing: Techniques and applications (DICTA) 1-8 (2014), 2527 Nov. 2014, Wollongong, NSW. https://doi.org/10.1109/dicta.2014.7008096.

Download references

Acknowledgements

The authors would like to thank the IEEE GRSS Data Fusion Technical Committee for organizing the 2015 Data Fusion Contest. We are thankful to Prof. Gabriele Moser for his constant support during the whole period of contest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satej N. Panditrao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11688 kb)

Supplementary material 2 (DOCX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jawak, S.D., Panditrao, S.N. & Luis, A.J. Synergistic object-based multi-class feature extraction in urban landscape using airborne LiDAR data. Spat. Inf. Res. 26, 483–496 (2018). https://doi.org/10.1007/s41324-018-0191-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-018-0191-1

Keywords

Navigation