Skip to main content
Log in

Exploring spatial patterns of trends in monthly rainfall and temperature in the Philippines based on Climate Research Unit grid

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

This study assessed spatial pattern of trends in monthly rainfall and temperature in the Philippines using Climate Research Unit time series data. Based on the results, there are significant trends in monthly rainfall and temperature in the country. On the average, monthly rainfall in the country is increasing by 0.34 mm/year. In the case of monthly temperature, the average increases per year were 0.008 and 0.019 °C, for maximum and minimum temperature, respectively. In terms of proportion, larger portion of the country showed significant trends in monthly temperature (> 80%) compared to rainfall (< 10%). Shift in wettest, driest, warmest, and coldest months were also observed between the periods of 1951–1980 to 1986–2015.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. https://crudata.uea.ac.uk/cru/data/hrg/.

References

  1. Cruz, F. T., Narisma, G. T., Villafuerte, M. Q., Cheng Chua, K. U., & Olaguera, L. M. (2013). A climatological analysis of the southwest monsoon rainfall in the Philippines. Atmospheric Research, 122, 609–616. https://doi.org/10.1016/j.atmosres.2012.06.010.

    Article  Google Scholar 

  2. Villafuerte, M. Q., Matsumoto, J., Akasaka, I., Takahashi, H. G., Kubota, H., & Cinco, T. A. (2014). Long-term trends and variability of rainfall extremes in the Philippines. Atmospheric Research, 137, 1–13. https://doi.org/10.1016/j.atmosres.2013.09.021.

    Article  Google Scholar 

  3. Cinco, T. A., de Guzman, R. G., Hilario, F. D., & Wilson, D. M. (2014). Long-term trends and extremes in observed daily precipitation and near surface air temperature in the Philippines for the period 1951–2010. Atmospheric Research, 145–146, 12–26. https://doi.org/10.1016/j.atmosres.2014.03.025.

    Article  Google Scholar 

  4. Manton, M. J., Della-Marta, P. M., Haylock, M. R., Hennessy, K. J., Nicholls, N., Chambers, L. E., et al. (2001). Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961–1998. International Journal of Climatology, 21(3), 269–284. https://doi.org/10.1002/joc.610.

    Article  Google Scholar 

  5. Raziei, T., Daryabari, J., Bordi, I., Modarres, R., & Pereira, L. S. (2014). Spatial patterns and temporal trends of daily precipitation indices in Iran. Climatic Change, 124(1–2), 239–253. https://doi.org/10.1007/s10584-014-1096-1.

    Article  Google Scholar 

  6. Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. International Journal of Climatology, 34(3), 623–642. https://doi.org/10.1002/joc.3711.

    Article  Google Scholar 

  7. New, M., Hulme, M., Jones, P., New, M., Hulme, M., & Jones, P. (1999, March 1). Representing twentieth-century space–Time climate variability. Part I: Development of a 1961–1990 mean monthly terrestrial climatology. http://dx.doi.org/10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2.research-article. Retrieved April 7, 2017, from http://journals.ametsoc.org/doi/abs/10.1175/1520-0442(1999)012%3C0829%3ARTCSTC%3E2.0.CO%3B2.

  8. Shi, H., Li, T., & Wei, J. (2017). Evaluation of the gridded CRU TS precipitation dataset with the point rain gauge records over the three-river headwaters region. Journal of Hydrology, 548, 322–332. https://doi.org/10.1016/j.jhydrol.2017.03.017.

    Article  Google Scholar 

  9. Salvacion, A. R., Macandog, D. M., Sta. Cruz, P. C., Saludes, R. B., Pangga, I. B., & Cumagun, C. J. R. (2018). (Submitted) Evaluation and spatial downscaling of CRU TS precipitation data in the Philippines.

  10. Immerzeel, W. (2008). Historical trends and future predictions of climate variability in the Brahmaputra basin. International Journal of Climatology, 28(2), 243–254. https://doi.org/10.1002/joc.1528.

    Article  Google Scholar 

  11. Jones, P. D., Harpham, C., Harris, I., Goodess, C. M., Burton, A., Centella-Artola, A., et al. (2016). Long-term trends in precipitation and temperature across the Caribbean. International Journal of Climatology, 36(9), 3314–3333. https://doi.org/10.1002/joc.4557.

    Article  Google Scholar 

  12. Philandras, C. M., Nastos, P. T., Kapsomenakis, J., Douvis, K. C., Tselioudis, G., & Zerefos, C. S. (2011). Long term precipitation trends and variability within the Mediterranean region. Natural Hazards and Earth System Sciences, 11(12), 3235–3250. https://doi.org/10.5194/nhess-11-3235-2011.

    Article  Google Scholar 

  13. Ongoma, V., & Chen, H. (2017). Temporal and spatial variability of temperature and precipitation over East Africa from 1951 to 2010. Meteorology and Atmospheric Physics, 129(2), 131–144. https://doi.org/10.1007/s00703-016-0462-0.

    Article  Google Scholar 

  14. Theil, H. (1992). A rank-invariant method of linear and polynomial regression analysis. In B. Raj & J. Koerts (Eds.), Henri Theil’s contributions to economics and econometrics (Vol. 23, pp. 345–381). Springer, Dordrecht, Netherlands. Retrieved from http://dx.doi.org/10.1007/978-94-011-2546-8_20.

    Google Scholar 

  15. Hamed, K. H. (2008). Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. Journal of Hydrology, 349(3–4), 350–363. https://doi.org/10.1016/j.jhydrol.2007.11.009.

    Article  Google Scholar 

  16. de Luis, M., Čufar, K., Saz, M. A., Longares, L. A., Ceglar, A., & Kajfež-Bogataj, L. (2014). Trends in seasonal precipitation and temperature in Slovenia during 1951–2007. Regional Environmental Change, 14(5), 1801–1810. https://doi.org/10.1007/s10113-012-0365-7.

    Article  Google Scholar 

  17. Espírito Santo, F., Ramos, A. M., de Lima, M. I. P., & Trigo, R. M. (2014). Seasonal changes in daily precipitation extremes in mainland Portugal from 1941 to 2007. Regional Environmental Change, 14(5), 1765–1788. https://doi.org/10.1007/s10113-013-0515-6.

    Article  Google Scholar 

  18. Sayemuzzaman, M., & Jha, M. K. (2014). Seasonal and annual precipitation time series trend analysis in North Carolina, United States. Atmospheric Research, 137, 183–194. https://doi.org/10.1016/j.atmosres.2013.10.012.

    Article  Google Scholar 

  19. Hijmans, R. J. (2014). Raster: Geographic data analysis and modeling. R package version 2.3-12. Retrieved from http://CRAN.R-project.org/package=raster.

  20. Ihaka, R., & Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3), 299–314. https://doi.org/10.1080/10618600.1996.10474713.

    Article  Google Scholar 

  21. R Core Team. (2014). R: A language and environment for statistical computing. R foundation for statistical computing. Retrieved from http://www.R-project.org/.

  22. Pohlert, T. (2017). Trend: Non-parametric trend tests and change-point detection. Retrieved from https://CRAN.R-project.org/package=trend.

  23. McLeod, A. (2011). Kendall: Kendall rank correlation and Mann-Kendall trend test. Retrieved from http://CRAN.R-project.org/package=Kendall.

  24. Wickham, H. (2009). ggplot2. New York, NY: Springer. Retrieved from http://link.springer.com/10.1007/978-0-387-98141-3.

  25. Neuwirth, E. (2014). RColorBrewer: ColorBrewer palettes. R package version 1.1-2. Retrieved from http://CRAN.R-project.org/package=RColorBrewer.

  26. IPCC. (2007). IPCC, 2007: Summary for policymakers. In Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

  27. D’Oria, M., Ferraresi, M., & Tanda, M. G. (2017). Historical trends and high-resolution future climate projections in northern Tuscany (Italy). Journal of Hydrology, 555(Supplement C), 708–723. https://doi.org/10.1016/j.jhydrol.2017.10.054.

    Article  Google Scholar 

  28. Abahous, H., Ronchail, J., Sifeddine, A., Kenny, L., & Bouchaou, L. (2017). Trend and change point analyses of annual precipitation in the Souss-Massa Region in Morocco during 1932–2010. Theoretical and Applied Climatology. https://doi.org/10.1007/s00704-017-2325-0.

    Article  Google Scholar 

  29. Markonis, Y., Batelis, S. C., Dimakos, Y., Moschou, E., & Koutsoyiannis, D. (2017). Temporal and spatial variability of rainfall over Greece. Theoretical and Applied Climatology, 130(1), 217–232. https://doi.org/10.1007/s00704-016-1878-7.

    Article  Google Scholar 

  30. He, Y., Tian, P., Mu, X., Gao, P., Zhao, G., Wang, F., et al. (2017). Changes in daily and monthly rainfall in the Middle Yellow River, China. Theoretical and Applied Climatology, 129(1), 139–148. https://doi.org/10.1007/s00704-016-1763-4.

    Article  Google Scholar 

  31. Kumar, S., Machiwal, D., & Dayal, D. (2017). Spatial modelling of rainfall trends using satellite datasets and geographic information system. Hydrological Sciences Journal, 62(10), 1636–1653. https://doi.org/10.1080/02626667.2017.1304643.

    Article  Google Scholar 

  32. Machiwal, D., & Jha, M. K. (2017). Evaluating persistence and identifying trends and abrupt changes in monthly and annual rainfalls of a semi-arid region in Western India. Theoretical and Applied Climatology, 128(3), 689–708. https://doi.org/10.1007/s00704-016-1734-9.

    Article  Google Scholar 

  33. Rahman, M. A., Yunsheng, L., & Sultana, N. (2017). Analysis and prediction of rainfall trends over Bangladesh using Mann-Kendall, Spearman’s rho tests and ARIMA model. Meteorology and Atmospheric Physics, 129(4), 409–424. https://doi.org/10.1007/s00703-016-0479-4.

    Article  Google Scholar 

  34. Mullens, E. D., Shafer, M., & Hocker, J. (2013). Trends in heavy precipitation in the southern USA. Weather, 68(12), 311–316. https://doi.org/10.1002/wea.2113.

    Article  Google Scholar 

  35. Trenberth, K. (2011). Changes in precipitation with climate change. Climate Research, 47(1), 123–138. https://doi.org/10.3354/cr00953.

    Article  Google Scholar 

  36. Bagtasa, G. (2017). Contribution of tropical cyclones to rainfall in the Philippines. Journal of Climate, 30(10), 3621–3633. https://doi.org/10.1175/JCLI-D-16-0150.1.

    Article  Google Scholar 

  37. Brito, T. T., Oliveira-Júnior, J. F., Lyra, G. B., Gois, G., & Zeri, M. (2017). Multivariate analysis applied to monthly rainfall over Rio de Janeiro state, Brazil. Meteorology and Atmospheric Physics, 129(5), 469–478. https://doi.org/10.1007/s00703-016-0481-x.

    Article  Google Scholar 

  38. Putnam, A. E., & Broecker, W. S. (2017). Human-induced changes in the distribution of rainfall. Science Advances. https://doi.org/10.1126/sciadv.1600871.

    Article  Google Scholar 

Download references

Acknowledgements

The corresponding author would like to thank the Department of Science and Technology, Accelerated Science and Technology Human Resource Development Program-National Science Consortium-University of the Philippines Los Baños (DOST ASTHRDP-NSC-UPLB) for the financial support for his Doctoral study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold R. Salvacion.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salvacion, A.R., Magcale-Macandog, D.B., Sta. Cruz, P.C. et al. Exploring spatial patterns of trends in monthly rainfall and temperature in the Philippines based on Climate Research Unit grid. Spat. Inf. Res. 26, 471–481 (2018). https://doi.org/10.1007/s41324-018-0189-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-018-0189-8

Keywords

Navigation