Advertisement

Spatial Information Research

, Volume 26, Issue 4, pp 405–414 | Cite as

Morphotectonic analysis of Sheer Khadd River basin using geo-spatial tools

  • Ankit Sharma
  • Prafull Singh
  • Praveen Kumar Rai
Article

Abstract

In the present study, a quantitative morphotectonic analysis of Sheer Khadd River basin has been carried out based on geomorphic and morphometric indices such as hypsometric integral, drainage basin asymmetry, mountain front sinuosity, basin elongation ratio, valley floor width to valley height ratio, river sinuosity and stream length gradient index using ASTER digital elevation model (DEM) and Google Earth images to understand the morphotectonics of the basin. The results indicate that Sheer Khadd River basin is tilting towards east and is elongated in shape due to active faulting and folding activity in the terrain. A moderate hypsometric integral value indicates that the basin is still under mature stage of erosion and reflecting a complexity in topography. Fluctuations in stream length gradient index over fault zones indicate irregularities in the drainage course due to the presence of fluvial knick points. The results of morphotectonic and morphometric analysis using DEM data is useful tool for morphotectonic evaluation of any complex terrain.

Keywords

Morphotectonics Sheer Khadd River basin Knick points Geomorphic indices GIS 

Notes

Acknowledgements

The corresponding author expresses his gratefulness to the Amity University Noida, for providing facility and constant encouragement for carried out this research work.

References

  1. 1.
    Zakerinejad, R., Hochschild, V., Rahimi, M., & Maerker, M. (2016). Morphotectonic analysis of the Zagros Mountains using high resolution DEM to assess gully erosion processes: A case study in the Fars Province, Southwest of Iran. International Geoinformatics Research Journal, 6(4), 1–17.Google Scholar
  2. 2.
    Keller, E. A., & Pinter, N. (2002). Active tectonics: Earthquakes, uplift, and landscape. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  3. 3.
    Ahmed, F., & Rao, K. S. (2016). Morphotectonic studies of the Tuirini drainage basin: A remote sensing and geographic information system perspective. International Journal of Geology, Earth & Environmental Sciences, 6(1), 54–65.Google Scholar
  4. 4.
    Keller, E., & Pinter, N. (1996). Active tectonics: Earthquake, uplift and landscape. Tuirini Drainage Basin, NJ: Prentice Hall.Google Scholar
  5. 5.
    Mahmoud, Y., & Kazem, S. G. (2014). Morphotectonic of Tang-e-Sarhe Catchment and its effect on morphology and behaviour of the river, Nikshahr, southeast of Iran. Indian Journal of Science and Technology, 7(11), 1871–1881.Google Scholar
  6. 6.
    Bali, B. S., Wani, A. A., & Khan, R. A. (2016). Morphotectonic analysis of the Madhumati watershed, northeast Kashmir Valley. Arabian Journal of Geosciences, 9, 390.  https://doi.org/10.1007/s12517-016-2395-9.CrossRefGoogle Scholar
  7. 7.
    Mandi, S., & Soren, K. (2016). Morphotectonic analysis of the Chel River, Northern West Bengal, India. Journal of Humanities and Social Science, 21(6), 1–6.Google Scholar
  8. 8.
    Sarma, J. N., Sukla, A., & Murgante, B. (2015). Morphotectonic study of the Brahmaputra basin using geoinformatics. Journal of Geological Survey of India, 86, 324–330.CrossRefGoogle Scholar
  9. 9.
    Suryawanshi, R. A., & Golekar, R. B. (2014). Morphotectonic and lineament analysis from Bhatia and Jaigarh Creek, Ratnagiri, MS, India: Neotectonic implication. International Research Journal of Earth Sciences, 2(10), 16–25.Google Scholar
  10. 10.
    Bhat, F. A., Bhat, I. M., Sana, H., Iqbal, M., & Mir, A. R. (2013). Identification of geomorphic signatures of active tectonics in the West Lidder Basin, Kashmir Himalayas: Using remote sensing and GIS. International Journal of Geomatics and Geosciences, 4(1), 164–176.Google Scholar
  11. 11.
    Eleni, K. D., Skilodimou, H., Bathrellos, D. G., Assimina, A., & Evangelos, K. (2015). Morphotectonic analysis, structural evolution/pattern of a contractional ridge: Giouchtas Mt., Central Crete, Greece. Journal of Earth System Science, 124(3), 587–602.CrossRefGoogle Scholar
  12. 12.
    Pike, R. J., & Wilson, S. E. (1971). Elevation-relief ratio, hypsometric integral and geomorphic area-altitude analysis. Bulletin of the Geological Society of America, 82(4), 1079–1084.CrossRefGoogle Scholar
  13. 13.
    Hack, J. (1957). Studies of longitudinal stream profiles in Virginia and Maryland. U.S. Geological Survey Professional Paper 294-B.Google Scholar
  14. 14.
    Bull, W. (1977). Tectonic geomorphology of the Mojave Desert, California. US Geological Survey Contract Report 14-0-001-G-394. Menlo Park, CA: Office of Earthquakes, Volcanoes, and Engineering.Google Scholar
  15. 15.
    Bull, W., & Mc Fadden, L. D. (1977). Tectonic geomorphology north and south of the Garlock fault, California. In D. O. Doehering (Ed.), Geomorphology in arid regions. Proceedings of the eighth annual geomorphology symposium (pp. 115–138). Binghamton, NY: State University of New York.Google Scholar
  16. 16.
    Schumm, S. A. (1956). Evolution of drainage systems and slopes in bad lands at Perth Amboy, New Jersey. Bulletin of the Geological Society of America, 67, 597–646.CrossRefGoogle Scholar
  17. 17.
    Rai, P. K., Chaubey, P. K., Mohan, K., & Singh, P. (2017). Geoinformatics for assessing the inferences of quantitative drainage morphometry of the Narmada Basin in India. Applied Geomatics, 9(3), 167–189.CrossRefGoogle Scholar
  18. 18.
    Singh, P., Thakur, J., & Singh, U. C. (2013). Morphometric analysis of Morar River Basin, Madhya Pradesh, India, using remote sensing and GIS techniques. Environmental Earth Sciences, 68(7), 1967–1977.CrossRefGoogle Scholar
  19. 19.
    Strahler, A. N. (1964). Quantitative geomorphology of drainage basin and channel network. In V. T. Chow (Ed.), Handbook of applied hydrology. New York: McGraw Hill.Google Scholar
  20. 20.
    Kale, V. S., & Shejwalkar, N. (2008). Uplift along the western margin of the Deccan Basalt Province: Is there any geomorphometric evidence? Journal of Earth System Science, 117(6), 959–971.CrossRefGoogle Scholar

Copyright information

© Korean Spatial Information Society 2018

Authors and Affiliations

  • Ankit Sharma
    • 1
  • Prafull Singh
    • 1
  • Praveen Kumar Rai
    • 2
  1. 1.Amity Institute of Geo-Informatics and Remote SensingAmity UniversityNoidaIndia
  2. 2.Department of Geography, Institute of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations