Discrete finite-time robust fault-tolerant high-order sliding mode control of uncertain quadruped robot: an experimental assessment

Abstract

This study addresses a novel discrete finite-time fault compensation method for a quadruped robot leg when the parameter uncertainties and the actuator faults affect the robot dynamics. The occurrence times, shapes, and pattern of the faults are completely unknown. The actuator faults and dynamic uncertainties are reconstructed precisely in finite-time based on discrete-time super twisting estimator. The lumped fault estimator has simple structure. Defining a hybrid high-order sliding surface, a constructive fault-tolerant tracking controller is achieved. The proposed controllers guarantee robustness against uncertainties associated with the robotic manipulator and all type of actuator faults. It is guaranteed that all signals in the closed-loop system are finite-time stable. Finally, experiments are performed on one leg of a quadruped robot to evaluate the effectiveness and feasibility of the proposed control scheme.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Azizi, A., Nourisola, H., Maidabad, S.S.: Fault-tolerant control of wind turbines with an adaptive output feedback sliding mode controller. Renew. Energy 135, 55–65 (2019)

    Article  Google Scholar 

  2. Blanke, M., Kinnaert, M., Lunze, M.J., Staroswiecki, M.: Diagnosis and fault-tolerant control. Springer, Berlin (2006)

    Google Scholar 

  3. Calisti, M., Corucci, F., Arienti, A., Laschi, C.: Dynamics of underwater legged locomotion: modeling and experiments on an octopus-inspired robot. Bioinspiration Biomim. 10, 046012 (2015)

    Article  Google Scholar 

  4. Cambera, J.C., Batlle, V.F.: Input-state feedback linearization control of a single-link flexible robot arm moving under gravity and joint friction. Robot. Auton. Syst. 88, 24–36 (2017)

    Article  Google Scholar 

  5. Corradini, M.L., Fossi, V., Giantomassi, A., Ippoliti, G., Longhi, S., Orlando, G.: Discrete time sliding mode control of robotic manipulators: development and experimental validation. Control Eng. Pract. 20, 816–822 (2012)

    Article  Google Scholar 

  6. Farid, Y., Bigdeli, N.: Robust adaptive intelligent sliding model control for a class of uncertain chaotic systems with unknown time-delay. Nonlinear Dyn. 67, 2225–2240 (2012). https://doi.org/10.1007/s11071-011-0141-0

    MathSciNet  Article  MATH  Google Scholar 

  7. Farid, Y., Bigdeli, N.: Inverse optimality in the class of Hopfield neural networks with input nonlinearity. Neural Comput. Appl. 22, 711–717 (2013). https://doi.org/10.1007/s00521-011-0756-6

    Article  Google Scholar 

  8. Farid, Y., Ehsani-Seresht, A.: Robust adaptive fractional-order backstepping sliding mode control of uncertain continuum robot. In: 2018 6th RSI International Conference on Robotics and Mechatronics (IcRoM), Tehran, Iran, pp. 394–399. (2018). https://doi.org/10.1109/ICRoM.2018.8657491

  9. Farid, Y., Moghaddam, T.V.: Generalized projective synchronization of chaotic satellites problem using linear matrix inequality. Int. J. Dyn. Control 2, 577–586 (2014). https://doi.org/10.1007/s40435-014-0089-2

    Article  Google Scholar 

  10. Farid, Y., Ramezani, A.: A wavelet-based robust adaptive T-S fuzzy controller design for synchronization of faulty chaotic gyrostat systems. J. Control Autom. Electr. Syst. (2020). https://doi.org/10.1007/s40313-020-00647-z

    Article  Google Scholar 

  11. Farid, Y., Bigdeli, N., Afshar, K.: Anti-synchronization of chaotic neural networks with time varying delays via linear matrix inequality. Int. J. Phys. Sci. 7(2), 273–280 (2012)

    Google Scholar 

  12. Farid, Y., Majd, V.J., Ehsani-Seresht, A., Prescribed performance control of quadruped robot. In: 2016 4th International Conference on Robotics and Mechatronics (ICROM), Tehran, pp. 374–379. (2016). https://doi.org/10.1109/ICRoM.2016.7886767

  13. Farid, Y., Majd, V.J., Ehsani-Seresht, A.: Fractional-order active fault-tolerant force-position controller design for the legged robots using saturated actuator with unknown bias and gain degradation. Mech. Syst. Signal Process. 104, 465–486 (2018a). https://doi.org/10.1016/j.ymssp.2017.11.010

    Article  Google Scholar 

  14. Farid, Y., Johari-Majd, V., Ehsani-Seresht, A.: Observer-based robust adaptive force-position controller design for quadruped robots with actuator faults. Int. J. Adapt. Control Signal Process. pp. 1–20. (2018b). https://doi.org/10.1002/acs.2923

  15. Farid, Y., Majd, V.J., Ehsani-Seresht, A.: Dynamic-free robust adaptive intelligent fault-tolerant controller design with prescribed performance for stable motion of quadruped robots. Adapt. Behav. (2019). https://doi.org/10.1177/1059712319890692

    Article  Google Scholar 

  16. Gang, C., Bo, J., Ying, C.: Nonsingular fast terminal sliding mode posture control for six-legged walking robots with redundant actuation. Mechatronics 50, 1–15 (2018)

    Article  Google Scholar 

  17. Gou, B., Ge, X.L., Liu, Y.C., Feng, X.Y.: Load-current-based sensor fault diagnosis and tolerant control scheme for traction inverters. Electron. Lett. 52(20), 1717–1719 (2016)

    Article  Google Scholar 

  18. Han, S.Y., Chen, Y.H., Tang, G.Y.: Fault diagnosis and fault-tolerant tracking control for discrete-time systems with faults and delays in actuator and measurement. J. Frankl. Inst. 354, 4719–4738 (2017)

    MathSciNet  Article  Google Scholar 

  19. Hashemi, M.: Adaptive neural dynamic surface control of MIMO nonlinear time delay systems with time-varying actuator failures. Int. J. Adapt. Control Signal Process. 31, 275–296 (2017)

    MathSciNet  Article  Google Scholar 

  20. Hernandez-Alcantara, D., Amezquita-Brooks, L., Morales-Menendez, R., Sename, O., Dugard, L.: The cross-coupling of lateral-longitudinal vehicle dynamics: towards decentralized fault-tolerant control schemes. Mechatronics 50, 377–393 (2018)

    Article  Google Scholar 

  21. Hu, Q., Xu, L., Zhang, A.: Adaptive back-stepping trajectory tracking control of robot manipulator. J. Frankl. Inst. 349(3), 1087–1105 (2012)

    Article  Google Scholar 

  22. Hu, Q., Zhang, X., Niu, G.: Observer-based fault-tolerant control and experimental verification for rigid spacecraft. Aerosp. Sci. Technol. (2019). https://doi.org/10.1016/j.ast.2019.06.013

    Article  Google Scholar 

  23. Li, H., Gao, H., Shi, P., Zhao, X.: Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach. Automatica 50, 1825–1834 (2014)

    MathSciNet  Article  Google Scholar 

  24. Liang, W., Huang, S., Chen, S., Tan, K.K.: Force estimation and failure detection based on disturbance observer for an ear surgical device. ISA Trans. 66, 476–484 (2017)

    Article  Google Scholar 

  25. Majd, ​V.J., Simaan, M.A., A continuous friction model for servo systems with stiction. In: The 4th IEEE Conference on Control Applications, Albany, NY, pp. 296–301 (1995)

  26. Mihoub, M., Nouri, A.S., Abdennour, R.B.: Real-time application of discrete second order sliding mode control to a chemical reactor. Control Eng. Pract. 17, 1089–1095 (2009)

    Article  Google Scholar 

  27. Mousavi, ​S.M., Majd, V.J.: Robust filtering of extended stochastic genetic regulatory networks with parameter uncertainties, disturbances, and time-varying delays. Neurocomputing 74, 2123–2134 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  28. Nagesh, I., Edwards, C.: A multivariable super-twisting sliding mode approach. Automatica 50, 984–988 (2014)

    MathSciNet  Article  Google Scholar 

  29. Noura, H., Theilliol, D.: Fault-tolerant control systems: design and practical applications. Springer, Berlin (2009)

    Google Scholar 

  30. Pan, Y., Li, X., Wang, H., Yu, H.: Continuous sliding mode control of compliant robot arms: a singularly perturbed approach. Mechatronics 52, 127–134 (2018)

    Article  Google Scholar 

  31. Sharma, R., Gaur, P., Mittal, A.P.: Performance analysis of two-degree of freedom fractional order PID controllers for robotic manipulator with payload. ISA Trans. 58, 279–291 (2015)

    Article  Google Scholar 

  32. Veselí, B., Draženović, B.P., Milosavljevic, C.: Improved discrete-time sliding-mode position control using Euler velocity estimation. IEEE Trans. Ind. Electron. 57(11), 3840–3847 (2010)

    Article  Google Scholar 

  33. Yan, M., Shi, Y.: Robust discrete-time sliding mode control for uncertain systems with time-varying state delay. IET Control Theory Appl. 2, 662–674 (2008)

    MathSciNet  Article  Google Scholar 

  34. Yang, R., Yang, C., Chen, M., Annamalai, A.S.K.: Discrete-time optimal adaptive RBFNN control for robot manipulators with uncertain dynamics. Neurocomputing 234, 107–115 (2017)

    Article  Google Scholar 

  35. Zakeri, E., Moeinkhah, H.: Digital control design for an IPMC actuator using adaptive optimal proportional integral plus method: simulation and experimental study. Sens. Actuat. A 298, 111577 (2019)

    Article  Google Scholar 

  36. Zakeri, E., Moezi, S.A., Eghtesad, M.: Optimal interval type-2 fuzzy fractional order super twisting algorithm: a second order sliding mode controller for fully-actuated and under-actuated nonlinear systems. ISA Trans. 85, 13–32 (2019)

    Article  Google Scholar 

  37. Zeghlache, S., Djerioui, A., Benyettou, L., Benslimane, T., Mekki, H., Bouguerra, A.: Fault tolerant control for modified quadrotor via adaptive type-2 fuzzy backstepping subject to actuator faults. ISA Trans. (2019). https://doi.org/10.1016/j.isatra.2019.04.034

    Article  Google Scholar 

  38. Zhao, J., Jiang, B., Chowdhury, F.N., Shi, P.: Active fault-tolerant control for near space vehicles based on reference model adaptive sliding mode scheme. Int. J. Adapt. Control Signal Process. 28, 765–777 (2014)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yousef Farid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: details of leg dynamics

Appendix: details of leg dynamics

The structure and details of matrixes \(M\), \(C\), and \(G\) presented in Sect. 2 are as:

$$M(q)=\left[\begin{array}{ccc}{M}_{11}& {M}_{12}& {M}_{13}\\ {M}_{21}& {M}_{22}& {M}_{23}\\ {M}_{31}& {M}_{32}& {M}_{33}\end{array}\right], \, C(q,\dot{q})=\left[\begin{array}{ccc}{C}_{11}& {C}_{12}& {C}_{13}\\ {C}_{21}& {C}_{22}& {C}_{23}\\ {C}_{31}& {C}_{32}& 0\end{array}\right], \, G(q)=\left[\begin{array}{l}{G}_{1}\\ {G}_{2}\\ {G}_{3}\end{array}\right]$$

where:\({M}_{11}=\left({m}_{2}+{m}_{3}\right){d}^{2}+\left({m}_{2}/4+{m}_{3}\right){L}_{2}^{2}\mathrm{cos}\left({q}_{2}^{2}\right)+{m}_{2}{d}^{2}\mathrm{sin}\left({q}_{2}^{2}\right)-{m}_{2}d{L}_{2}\mathrm{sin}\left(2{q}_{2}\right)/2+{m}_{3}{L}_{3}\mathrm{cos}\left({q}_{2}+{q}_{3}\right)\left({L}_{3}/4+{L}_{2}\mathrm{cos}\left({q}_{2}\right)\right)+{n}_{r1}^{2}{I}_{m}\), \({M}_{12}=d\left({m}_{3}{L}_{3}\mathrm{sin}\left({q}_{2}+{q}_{3}\right)+{m}_{2}{L}_{2}\mathrm{sin}\left({q}_{2}\right)\right)+2{m}_{3}{L}_{2}\mathrm{sin}\left({q}_{2}\right)+2d{m}_{3}\mathrm{cos}\left({q}_{2}\right)/2\), \({M}_{13}=d{m}_{3}{L}_{3}\mathrm{sin}\left({q}_{2}+{q}_{3}\right)/2\), \({M}_{21}={M}_{12}\), \({M}_{22}={m}_{2}{L}_{2}^{2}/4+{m}_{3}({L}_{2}^{2}+{L}_{3}^{2}/4)+{m}_{2}{d}^{2}+{m}_{3}{L}_{2}{L}_{3}\mathrm{cos}\left({q}_{3}\right)++{n}_{r2}^{2}{I}_{m}\), \({M}_{23}={m}_{3}{L}_{3}\left({L}_{3}+2{L}_{2}\mathrm{cos}\left({q}_{3}\right)\right)/4+{n}_{r3}^{2}{I}_{m}/2\), \({M}_{31}={M}_{13}\), \({M}_{32}={M}_{23}\), \({M}_{33}={m}_{3}{L}_{3}^{2}/4+{n}_{r3}^{2}{I}_{m}\),\({C}_{11}={m}_{2}d\left(d\mathrm{sin}\left(2{q}_{2}\right)-{L}_{2}\mathrm{cos}\left(2{q}_{2}\right)\right){\dot{q}}_{2}/2-{m}_{3}{L}_{3}^{2}\mathrm{sin}\left(2\left({q}_{2}+{q}_{3}\right)\right)({\dot{q}}_{2}+{\dot{q}}_{3})/8-({m}_{2}+4{m}_{3}){L}_{2}^{2}\mathrm{sin}\left(2{q}_{2}\right){\dot{q}}_{2}/8-{m}_{3}{L}_{2}{L}_{3}\mathrm{sin}\left({q}_{3}\right){\dot{q}}_{3}/4-{m}_{3}{L}_{2}{L}_{3}\mathrm{sin}\left(2{q}_{2}+{q}_{3}\right)(2{\dot{q}}_{2}+{\dot{q}}_{3})/4\),\({C}_{12}={m}_{2}\left(\mathrm{sin}\left(2{q}_{2}\right)\left({d}^{2}-{L}_{2}^{2}/4\right)-d{L}_{2}\mathrm{cos}\left(2{q}_{2}\right)\right){\dot{q}}_{1}/2-{m}_{3}{L}_{3}\left({L}_{3}\mathrm{sin}\left(2\left({q}_{2}+{q}_{3}\right)\right)/8+{L}_{2}\mathrm{sin}\left(2{q}_{2}+{q}_{3}\right)/2\right){\dot{q}}_{1}-{m}_{3}{L}_{2}^{2}\mathrm{sin}\left(2{q}_{2}\right){\dot{q}}_{1}/2-d\left(d{m}_{2}\mathrm{sin}\left({q}_{2}\right)-{L}_{2}\mathrm{cos}\left({q}_{2}\right)({m}_{2}/2+{m}_{3})\right){\dot{q}}_{2}+d{m}_{3}{L}_{3}\mathrm{cos}\left({q}_{2}+{q}_{3}\right)\left({\dot{q}}_{2}+{\dot{q}}_{3}\right)/2\),\({C}_{13}=d{m}_{3}{L}_{3}\mathrm{cos}\left({q}_{2}+{q}_{3}\right){\dot{q}}_{2}/2-{m}_{3}{L}_{3}\mathrm{sin}\left({q}_{2}+{q}_{3}\right)\left({L}_{3}\mathrm{cos}\left({q}_{2}+{q}_{3}\right)+{L}_{2}\mathrm{cos}\left({q}_{2}\right)\right){\dot{q}}_{1}/2+d{m}_{3}{L}_{3}\mathrm{cos}\left({q}_{2}+{q}_{3}\right){\dot{q}}_{3}/2\), \({C}_{21}={L}_{2}^{2}\mathrm{sin}\left(2{q}_{2}\right)\left({m}_{2}/4+{m}_{3}\right){\dot{q}}_{1}+\left({m}_{3}{L}_{3}^{2}\mathrm{sin}\left(2\left({q}_{2}+{q}_{3}\right)\right)/4-{m}_{2}{d}^{2}\mathrm{sin}\left(2{q}_{2}\right)\right){\dot{q}}_{2}+{L}_{2}\left({m}_{3}{L}_{3}\mathrm{sin}\left(2{q}_{2}+{q}_{3}\right)+d{m}_{2}\mathrm{cos}\left(2{q}_{2}\right)/2\right){\dot{q}}_{3}\), \({C}_{22}=-{m}_{3}{L}_{2}{L}_{3}\mathrm{sin}\left({q}_{3}\right){\dot{q}}_{3}/2\), \({C}_{23}=-{m}_{3}{L}_{2}{L}_{3}\mathrm{sin}\left({q}_{3}\right)({\dot{q}}_{2}+{\dot{q}}_{3})/2\), \({C}_{31}={m}_{3}{L}_{3}\mathrm{sin}\left({q}_{2}+{q}_{3}\right)\left({L}_{3}\mathrm{cos}\left({q}_{2}+{q}_{3}\right)+2{L}_{2}\mathrm{cos}\left({q}_{2}\right)\right){\dot{q}}_{1}/4\), \({C}_{32}={m}_{3}{L}_{2}{L}_{3}\mathrm{sin}\left({q}_{3}\right){\dot{q}}_{2}/2\),\({G}_{1}=g{m}_{2}{L}_{2}\mathrm{sin}\left({q}_{1}\right)\mathrm{cos}\left({q}_{2}\right)/2-d\mathrm{sin}\left({q}_{2}\right)+d\mathrm{cos}\left({q}_{1}\right)+{m}_{3}{L}_{3}\mathrm{sin}\left({q}_{1}\right)\mathrm{cos}\left({q}_{2}+{q}_{3}\right)/2+{L}_{2}\mathrm{cos}\left({q}_{2}\right)+d\mathrm{cos}\left({q}_{1}\right)\), \({G}_{2}=g\mathrm{cos}\left({q}_{1}\right)\left({m}_{3}{L}_{3}\mathrm{sin}\left({q}_{2}+{q}_{3}\right)+{m}_{2}{L}_{2}\mathrm{sin}\left({q}_{2}\right)+2{m}_{3}{L}_{2}\mathrm{sin}\left({q}_{2}\right)+2d{m}_{2}\mathrm{cos}\left({q}_{2}\right)\right)/2\), \({G}_{3}=g{m}_{3}{L}_{3}\mathrm{sin}\left({q}_{2}+{q}_{3}\right)\mathrm{cos}\left({q}_{1}\right)/2\).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Farid, Y., Ehsani-Seresht, A. Discrete finite-time robust fault-tolerant high-order sliding mode control of uncertain quadruped robot: an experimental assessment. Int J Intell Robot Appl 5, 23–36 (2021). https://doi.org/10.1007/s41315-020-00161-0

Download citation

Keywords

  • Quadruped robot
  • Fault-tolerant control (FTC)
  • Super twisting estimator
  • High-order sliding surface
  • Finite-time sliding mode control